Limits...
Characterization of VuMATE1 Expression in Response to Iron Nutrition and Aluminum Stress Reveals Adaptation of Rice Bean (Vigna umbellata) to Acid Soils through Cis Regulation.

Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S - Front Plant Sci (2016)

Bottom Line: The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status.We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition.These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China.

ABSTRACT
Rice bean (Vigna umbellata) VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.

No MeSH data available.


Cell-specificity of localization of VuMATE1 in roots. Immunostaining with anti-VuMATE1 antibody is shown in the root apex either before (A) or after Al stress for 9 h (B), and maturation root zone (C). Bar, 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835453&req=5

Figure 4: Cell-specificity of localization of VuMATE1 in roots. Immunostaining with anti-VuMATE1 antibody is shown in the root apex either before (A) or after Al stress for 9 h (B), and maturation root zone (C). Bar, 100 μm.

Mentions: To further investigate why VuMATE1 expression under the control of its native promoter could not complement the frd3-1 mutant, we examined the cell-specificity of localization of VuMATE1 with a polyclonal antibody. In root apex, no fluorescent signal was observed (Figure 4A). However, fluorescence signal was detected in the epidermis of root apex after 9 h exposure to 25 μM Al (Figure 4B). Moreover, VuMATE1 is localized on the plasma membrane of the distal side of epidermis cell (Figure 4B). Being mainly localized to cells near xylem vessels, and the epidermis in maturation root zone, VuMATE1 could not be detected in the pericycle or in cells internal to the pericycle (Figure 4C).


Characterization of VuMATE1 Expression in Response to Iron Nutrition and Aluminum Stress Reveals Adaptation of Rice Bean (Vigna umbellata) to Acid Soils through Cis Regulation.

Liu M, Xu J, Lou H, Fan W, Yang J, Zheng S - Front Plant Sci (2016)

Cell-specificity of localization of VuMATE1 in roots. Immunostaining with anti-VuMATE1 antibody is shown in the root apex either before (A) or after Al stress for 9 h (B), and maturation root zone (C). Bar, 100 μm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835453&req=5

Figure 4: Cell-specificity of localization of VuMATE1 in roots. Immunostaining with anti-VuMATE1 antibody is shown in the root apex either before (A) or after Al stress for 9 h (B), and maturation root zone (C). Bar, 100 μm.
Mentions: To further investigate why VuMATE1 expression under the control of its native promoter could not complement the frd3-1 mutant, we examined the cell-specificity of localization of VuMATE1 with a polyclonal antibody. In root apex, no fluorescent signal was observed (Figure 4A). However, fluorescence signal was detected in the epidermis of root apex after 9 h exposure to 25 μM Al (Figure 4B). Moreover, VuMATE1 is localized on the plasma membrane of the distal side of epidermis cell (Figure 4B). Being mainly localized to cells near xylem vessels, and the epidermis in maturation root zone, VuMATE1 could not be detected in the pericycle or in cells internal to the pericycle (Figure 4C).

Bottom Line: The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status.We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition.These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China.

ABSTRACT
Rice bean (Vigna umbellata) VuMATE1 appears to be constitutively expressed at vascular system but root apex, and Al stress extends its expression to root apex. Whether VuMATE1 participates in both Al tolerance and Fe nutrition, and how VuMATE1 expression is regulated is of great interest. In this study, the role of VuMATE1 in Fe nutrition was characterized through in planta complementation assays. The transcriptional regulation of VuMATE1 was investigated through promoter analysis and promoter-GUS reporter assays. The results showed that the expression of VuMATE1 was regulated by Al stress but not Fe status. Complementation of frd3-1 with VuMATE1 under VuMATE1 promoter could not restore phenotype, but restored with 35SCaMV promoter. Immunostaining of VuMATE1 revealed abnormal localization of VuMATE1 in vasculature. In planta GUS reporter assay identified Al-responsive cis-acting elements resided between -1228 and -574 bp. Promoter analysis revealed several cis-acting elements, but transcription is not simply regulated by one of these elements. We demonstrated that cis regulation of VuMATE1 expression is involved in Al tolerance mechanism, while not involved in Fe nutrition. These results reveal the evolution of VuMATE1 expression for better adaptation of rice bean to acid soils where Al stress imposed but Fe deficiency pressure released.

No MeSH data available.