Limits...
Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

Akram W, Anjum T, Ali B - Front Plant Sci (2016)

Bottom Line: Tomato plants were treated with PAA and fungal pathogen in various combinations.In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA.This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular Biology and Biotechnology, University of Lahore Lahore, Pakistan.

ABSTRACT
Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

No MeSH data available.


Related in: MedlinePlus

Extraction procedure and ISR activity of crude and purified metabolites from B. fortis IAGS162.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835451&req=5

Figure 1: Extraction procedure and ISR activity of crude and purified metabolites from B. fortis IAGS162.

Mentions: Cell free culture filtrate of B. fortis IAGS162 was prepared as described previously and extracted twice with series of organic solvents (Figure 1). All the organic extracts were thoroughly dried, then dissolved in 10% dimethyl sulfoxide (DMSO). These were amended in Murashige and Skoog (MS) medium at a concentration of 0.1%, and ISR bioassay was performed as described below. The extract with the positive ISR activity was partitioned into sub-fractions by performing silica gel column chromatography by stepwise elution method by using methanol and ethyl acetate. These sub-fractions were dissolved in 10% DMSO after drying, and 10 μl of each DMSO based formulation was again used in ISR bioassay.


Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

Akram W, Anjum T, Ali B - Front Plant Sci (2016)

Extraction procedure and ISR activity of crude and purified metabolites from B. fortis IAGS162.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835451&req=5

Figure 1: Extraction procedure and ISR activity of crude and purified metabolites from B. fortis IAGS162.
Mentions: Cell free culture filtrate of B. fortis IAGS162 was prepared as described previously and extracted twice with series of organic solvents (Figure 1). All the organic extracts were thoroughly dried, then dissolved in 10% dimethyl sulfoxide (DMSO). These were amended in Murashige and Skoog (MS) medium at a concentration of 0.1%, and ISR bioassay was performed as described below. The extract with the positive ISR activity was partitioned into sub-fractions by performing silica gel column chromatography by stepwise elution method by using methanol and ethyl acetate. These sub-fractions were dissolved in 10% DMSO after drying, and 10 μl of each DMSO based formulation was again used in ISR bioassay.

Bottom Line: Tomato plants were treated with PAA and fungal pathogen in various combinations.In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA.This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular Biology and Biotechnology, University of Lahore Lahore, Pakistan.

ABSTRACT
Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses.

No MeSH data available.


Related in: MedlinePlus