Limits...
The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.

Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N - Front Plant Sci (2016)

Bottom Line: The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system.The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described.With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.

View Article: PubMed Central - PubMed

Affiliation: Amity Institute of Biotechnology, Amity University Haryana Gurgaon, India.

ABSTRACT
The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.

No MeSH data available.


Related in: MedlinePlus

The strategic demonstration of inactive Cas9 system for Regulation of transcription and effector delivery. The inactive dCas9 is a catalytically inactive mutant repurposed for RNA-guided transcription regulation for high efficiency and specific CRISPR interference (CRISPRi). It has been used by fusion of dCas9 to effector domains like activator or repressor for RNA-guided DNA modulation of transcription. The dCas9 has also been used to deliver specific effectors to targeted genomic locations like GFP and DNA demethylase.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835450&req=5

Figure 3: The strategic demonstration of inactive Cas9 system for Regulation of transcription and effector delivery. The inactive dCas9 is a catalytically inactive mutant repurposed for RNA-guided transcription regulation for high efficiency and specific CRISPR interference (CRISPRi). It has been used by fusion of dCas9 to effector domains like activator or repressor for RNA-guided DNA modulation of transcription. The dCas9 has also been used to deliver specific effectors to targeted genomic locations like GFP and DNA demethylase.

Mentions: The nuclease deficient catalytically inactive mutant version of Cas9 (dCas9) has been used for RNA-guided transcription regulation, instead of genome editing (Gilbert et al., 2013; Qi et al., 2013). This modified system has been used for CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) for highly efficient and precise gene silencing and activation, respectively, using dCas9 with an effector and sgRNA. The dCas9 has an ability to incorporate gRNA and binding to the target (Xu et al., 2014). In comparison to the RNAi concept of transcript degradation and/or translation blocking, the CRISPRi system blocks the transcription initiation and elongation when dCas9/sgRNA is fused with a repressor. Therefore, dCas9/sgRNA system offers a general platform for RNA-guided DNA targeting for stable and efficient modulation of transcription. The dCas9 has been fused to effector domains with distinct regulatory functions for functional mapping of promoters and other genomic regulatory modules (Gilbert et al., 2013; Qi et al., 2013; Figure 3).


The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops.

Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N - Front Plant Sci (2016)

The strategic demonstration of inactive Cas9 system for Regulation of transcription and effector delivery. The inactive dCas9 is a catalytically inactive mutant repurposed for RNA-guided transcription regulation for high efficiency and specific CRISPR interference (CRISPRi). It has been used by fusion of dCas9 to effector domains like activator or repressor for RNA-guided DNA modulation of transcription. The dCas9 has also been used to deliver specific effectors to targeted genomic locations like GFP and DNA demethylase.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835450&req=5

Figure 3: The strategic demonstration of inactive Cas9 system for Regulation of transcription and effector delivery. The inactive dCas9 is a catalytically inactive mutant repurposed for RNA-guided transcription regulation for high efficiency and specific CRISPR interference (CRISPRi). It has been used by fusion of dCas9 to effector domains like activator or repressor for RNA-guided DNA modulation of transcription. The dCas9 has also been used to deliver specific effectors to targeted genomic locations like GFP and DNA demethylase.
Mentions: The nuclease deficient catalytically inactive mutant version of Cas9 (dCas9) has been used for RNA-guided transcription regulation, instead of genome editing (Gilbert et al., 2013; Qi et al., 2013). This modified system has been used for CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) for highly efficient and precise gene silencing and activation, respectively, using dCas9 with an effector and sgRNA. The dCas9 has an ability to incorporate gRNA and binding to the target (Xu et al., 2014). In comparison to the RNAi concept of transcript degradation and/or translation blocking, the CRISPRi system blocks the transcription initiation and elongation when dCas9/sgRNA is fused with a repressor. Therefore, dCas9/sgRNA system offers a general platform for RNA-guided DNA targeting for stable and efficient modulation of transcription. The dCas9 has been fused to effector domains with distinct regulatory functions for functional mapping of promoters and other genomic regulatory modules (Gilbert et al., 2013; Qi et al., 2013; Figure 3).

Bottom Line: The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system.The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described.With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.

View Article: PubMed Central - PubMed

Affiliation: Amity Institute of Biotechnology, Amity University Haryana Gurgaon, India.

ABSTRACT
The Clustered Regularly Interspaced Short Palindromic Repeats associated Cas9/sgRNA system is a novel targeted genome-editing technique derived from bacterial immune system. It is an inexpensive, easy, most user friendly and rapidly adopted genome editing tool transforming to revolutionary paradigm. This technique enables precise genomic modifications in many different organisms and tissues. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double-stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE) crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in a changing climate. The emerging areas of research for the genome editing in plants include interrogating gene function, rewiring the regulatory signaling networks and sgRNA library for high-throughput loss-of-function screening. In this review, we have described the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been described. With this powerful and innovative technique the designer GE non-GM plants could further advance climate resilient and sustainable agriculture in the future and maximizing yield by combating abiotic and biotic stresses.

No MeSH data available.


Related in: MedlinePlus