Limits...
Portable Automated Oxygen Administration System for hypoxaemic patients.

Alzoubi K, Alguraan Z, Ramahi OM - Springerplus (2016)

Bottom Line: Oxygen is a lifesaving medication that should be offered with an administration to a patient who suffers from oxygen deficiency to avoid toxic effects of excessive oxygen supplement as well as to minimize the exposure to hypoxaemia.In this work, a prototype model for a Portable Automated Oxygen Delivery System that consists of two subsystems: an Oxygen Reader Subsystem and an Automated Adjustment Oxygen Delivery Subsystem, both communicating wirelessly, has been developed.The system promises significant benefits in improving the life quality of hypoxaemic patients as well as healthcare service for oxygen delivery administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar.

ABSTRACT
Oxygen is a lifesaving medication that should be offered with an administration to a patient who suffers from oxygen deficiency to avoid toxic effects of excessive oxygen supplement as well as to minimize the exposure to hypoxaemia. This work aims to automate the process of administering oxygen delivery in order to extend the continuous oxygen administration process beyond the IC units, reduce the cost of oxygen administration in terms of well-trained health care providers and equipment, prolong the lifetime of oxygen supplement, and help in the process of weaning patient from oxygen. In this work, a prototype model for a Portable Automated Oxygen Delivery System that consists of two subsystems: an Oxygen Reader Subsystem and an Automated Adjustment Oxygen Delivery Subsystem, both communicating wirelessly, has been developed. The system promises significant benefits in improving the life quality of hypoxaemic patients as well as healthcare service for oxygen delivery administration.

No MeSH data available.


Related in: MedlinePlus

Controlling the  sensors LEDs and acquiring the conditioned transmitted light measurements from the  sensor
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835418&req=5

Fig9: Controlling the sensors LEDs and acquiring the conditioned transmitted light measurements from the sensor

Mentions: In this work, The A/D converter of the MCU captures the raw signal from sensor through the transducer circuit of the AFE with sampling rate equals to 500 samples per second. The raw measurements contain multiplexed data for the photodiode sensor for three different configurations: Red LED ON and Infra-red LED OFF, Red LED OFF and Infra-red LED OFF, and Red LED OFF and Infra-red LED ON. The LEDs driving circuit controls the LEDs switching sequences and their intensities through the output ports and PWM of the MCU as shown in Fig. 9. The MCU controls switching the LEDs in the following sequences for Red/Infra-red LEDs: ON/OFF, OFF/OFF, OFF/ON, OFF/OFF. The MCU unit de-multiplexes the captured measurements of the A/D converter to Red raw PPG signal, Infra-red raw PPG signal, and a reference signal. This means that the sampling frequency for the captured Red/Infra-red PPG signal is 125 sample/second. To reduce the power consumption when LEDs are ON, we use a timer to turn the LEDs OFF after reading the corresponding measurement for the photodiode sensor from AFE circuit. The synchronization between switching the LEDs and capturing their corresponding measurements is very important in this context to avoid capture unstable or invalid measurements.Fig. 9


Portable Automated Oxygen Administration System for hypoxaemic patients.

Alzoubi K, Alguraan Z, Ramahi OM - Springerplus (2016)

Controlling the  sensors LEDs and acquiring the conditioned transmitted light measurements from the  sensor
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835418&req=5

Fig9: Controlling the sensors LEDs and acquiring the conditioned transmitted light measurements from the sensor
Mentions: In this work, The A/D converter of the MCU captures the raw signal from sensor through the transducer circuit of the AFE with sampling rate equals to 500 samples per second. The raw measurements contain multiplexed data for the photodiode sensor for three different configurations: Red LED ON and Infra-red LED OFF, Red LED OFF and Infra-red LED OFF, and Red LED OFF and Infra-red LED ON. The LEDs driving circuit controls the LEDs switching sequences and their intensities through the output ports and PWM of the MCU as shown in Fig. 9. The MCU controls switching the LEDs in the following sequences for Red/Infra-red LEDs: ON/OFF, OFF/OFF, OFF/ON, OFF/OFF. The MCU unit de-multiplexes the captured measurements of the A/D converter to Red raw PPG signal, Infra-red raw PPG signal, and a reference signal. This means that the sampling frequency for the captured Red/Infra-red PPG signal is 125 sample/second. To reduce the power consumption when LEDs are ON, we use a timer to turn the LEDs OFF after reading the corresponding measurement for the photodiode sensor from AFE circuit. The synchronization between switching the LEDs and capturing their corresponding measurements is very important in this context to avoid capture unstable or invalid measurements.Fig. 9

Bottom Line: Oxygen is a lifesaving medication that should be offered with an administration to a patient who suffers from oxygen deficiency to avoid toxic effects of excessive oxygen supplement as well as to minimize the exposure to hypoxaemia.In this work, a prototype model for a Portable Automated Oxygen Delivery System that consists of two subsystems: an Oxygen Reader Subsystem and an Automated Adjustment Oxygen Delivery Subsystem, both communicating wirelessly, has been developed.The system promises significant benefits in improving the life quality of hypoxaemic patients as well as healthcare service for oxygen delivery administration.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar.

ABSTRACT
Oxygen is a lifesaving medication that should be offered with an administration to a patient who suffers from oxygen deficiency to avoid toxic effects of excessive oxygen supplement as well as to minimize the exposure to hypoxaemia. This work aims to automate the process of administering oxygen delivery in order to extend the continuous oxygen administration process beyond the IC units, reduce the cost of oxygen administration in terms of well-trained health care providers and equipment, prolong the lifetime of oxygen supplement, and help in the process of weaning patient from oxygen. In this work, a prototype model for a Portable Automated Oxygen Delivery System that consists of two subsystems: an Oxygen Reader Subsystem and an Automated Adjustment Oxygen Delivery Subsystem, both communicating wirelessly, has been developed. The system promises significant benefits in improving the life quality of hypoxaemic patients as well as healthcare service for oxygen delivery administration.

No MeSH data available.


Related in: MedlinePlus