Limits...
Immobilization of Polymeric Luminophor on Nanoparticles Surface.

Bolbukh Y, Podkoscielna B, Lipke A, Bartnicki A, Gawdzik B, Tertykh V - Nanoscale Res Lett (2016)

Bottom Line: Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques.The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed.The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

View Article: PubMed Central - PubMed

Affiliation: Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine. yu_bolbukh@yahoo.com.

ABSTRACT
Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

No MeSH data available.


Related in: MedlinePlus

Synthesis of 2,7-NAF.DM
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835396&req=5

Sch1: Synthesis of 2,7-NAF.DM

Mentions: The 2,7-NAF.DM was obtained in the two-step reaction. In the first step, naphthalene-2,7-diol (2,7.NAF) was reacted with epichlorohydrin (EP) in the two-phase liquid/liquid system including organic and aqueous phases. Next, esterification of the obtained diglycidyl ether was carried out using methacrylic acid (MA) in the presence of hydroquinone (polymerization inhibitor) and triethylbenzylammonium chloride as a catalyst. Finally, the aromatic monomer (2,7-NAF.DM) with photoluminescent properties was prepared (Scheme 1). The detailed information about synthesis was presented elsewhere [20, 22].Scheme 1


Immobilization of Polymeric Luminophor on Nanoparticles Surface.

Bolbukh Y, Podkoscielna B, Lipke A, Bartnicki A, Gawdzik B, Tertykh V - Nanoscale Res Lett (2016)

Synthesis of 2,7-NAF.DM
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835396&req=5

Sch1: Synthesis of 2,7-NAF.DM
Mentions: The 2,7-NAF.DM was obtained in the two-step reaction. In the first step, naphthalene-2,7-diol (2,7.NAF) was reacted with epichlorohydrin (EP) in the two-phase liquid/liquid system including organic and aqueous phases. Next, esterification of the obtained diglycidyl ether was carried out using methacrylic acid (MA) in the presence of hydroquinone (polymerization inhibitor) and triethylbenzylammonium chloride as a catalyst. Finally, the aromatic monomer (2,7-NAF.DM) with photoluminescent properties was prepared (Scheme 1). The detailed information about synthesis was presented elsewhere [20, 22].Scheme 1

Bottom Line: Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques.The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed.The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

View Article: PubMed Central - PubMed

Affiliation: Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine. yu_bolbukh@yahoo.com.

ABSTRACT
Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

No MeSH data available.


Related in: MedlinePlus