Limits...
Immobilization of Polymeric Luminophor on Nanoparticles Surface.

Bolbukh Y, Podkoscielna B, Lipke A, Bartnicki A, Gawdzik B, Tertykh V - Nanoscale Res Lett (2016)

Bottom Line: Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques.The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed.The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

View Article: PubMed Central - PubMed

Affiliation: Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine. yu_bolbukh@yahoo.com.

ABSTRACT
Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

No MeSH data available.


Related in: MedlinePlus

Absorption spectra. a The neat polymer (powder) and the silica with chemisorbed polymer 2,7-NAF.DM (dry powder and toluene dispersion). b, c Powder and toluene dispersion of carbon nanotubes (MWCNTs); 5 carbon nanotubes mechanically mixed with poly2,7-NAF.DM in ratio 1:10; 6 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:10; 7 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:40 (Table 1)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835396&req=5

Fig6: Absorption spectra. a The neat polymer (powder) and the silica with chemisorbed polymer 2,7-NAF.DM (dry powder and toluene dispersion). b, c Powder and toluene dispersion of carbon nanotubes (MWCNTs); 5 carbon nanotubes mechanically mixed with poly2,7-NAF.DM in ratio 1:10; 6 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:10; 7 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:40 (Table 1)

Mentions: UV–Vis absorption spectra of the materials under this study in their powder form and dispersed in toluene are given in Fig. 6. The strong absorption in the UV region, up to 350 nm, obviously originates from naphthalene [21, 23]. The 450-nm band observed for pure polymer [23] and probably originates from the π conjugation in the naphthalene-diepoxymethacrylate moiety was not detected for 2,7-NAF.DM chemisorbed on the silica surface (Fig. 6). The 250-nm peak can be attributed to saturated compounds containing atoms with lone pairs (non-bonding electrons) capable of n → σ* transitions. Also, the aromatic residues (mostly phenyl) show bands near 250 nm [33]. Isomerization of polymer can result in 250-nm peak appearances too [34].Fig. 6


Immobilization of Polymeric Luminophor on Nanoparticles Surface.

Bolbukh Y, Podkoscielna B, Lipke A, Bartnicki A, Gawdzik B, Tertykh V - Nanoscale Res Lett (2016)

Absorption spectra. a The neat polymer (powder) and the silica with chemisorbed polymer 2,7-NAF.DM (dry powder and toluene dispersion). b, c Powder and toluene dispersion of carbon nanotubes (MWCNTs); 5 carbon nanotubes mechanically mixed with poly2,7-NAF.DM in ratio 1:10; 6 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:10; 7 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:40 (Table 1)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835396&req=5

Fig6: Absorption spectra. a The neat polymer (powder) and the silica with chemisorbed polymer 2,7-NAF.DM (dry powder and toluene dispersion). b, c Powder and toluene dispersion of carbon nanotubes (MWCNTs); 5 carbon nanotubes mechanically mixed with poly2,7-NAF.DM in ratio 1:10; 6 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:10; 7 carbon nanotubes with the poly2,7-NAF.DM chemisorbed via in situ grafted polymerization with the MWCNTs/polymer ratio 1:40 (Table 1)
Mentions: UV–Vis absorption spectra of the materials under this study in their powder form and dispersed in toluene are given in Fig. 6. The strong absorption in the UV region, up to 350 nm, obviously originates from naphthalene [21, 23]. The 450-nm band observed for pure polymer [23] and probably originates from the π conjugation in the naphthalene-diepoxymethacrylate moiety was not detected for 2,7-NAF.DM chemisorbed on the silica surface (Fig. 6). The 250-nm peak can be attributed to saturated compounds containing atoms with lone pairs (non-bonding electrons) capable of n → σ* transitions. Also, the aromatic residues (mostly phenyl) show bands near 250 nm [33]. Isomerization of polymer can result in 250-nm peak appearances too [34].Fig. 6

Bottom Line: Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques.The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed.The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

View Article: PubMed Central - PubMed

Affiliation: Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine. yu_bolbukh@yahoo.com.

ABSTRACT
Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

No MeSH data available.


Related in: MedlinePlus