Limits...
Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

Amorim JL, Simas DL, Pinheiro MM, Moreno DS, Alviano CS, da Silva AJ, Fernandes PD - PLoS ONE (2016)

Bottom Line: These effects were also obtained with similar amounts of pure limonene.Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral.Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

View Article: PubMed Central - PubMed

Affiliation: Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil.

ABSTRACT
Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

No MeSH data available.


Related in: MedlinePlus

Effects of C. limon, C. limonia and C. aurantifolia essential oils on carrageenan-induced protein extravasation and nitric oxide (NO) production in a subcutaneous air pouch (SAP).Animals were pre-treated with various doses (10, 30 or 100 mg/kg, p.o.) of EO, dexamethasone (5 mg/kg, i.p.) or vehicle. The results are presented as the mean ± S.D. (n = 10 per group). Statistical significance was calculated by ANOVA followed by Bonferroni’s test. #P < 0.05 when comparing the carrageenan-injected group with the PBS-injected group and *P < 0.05 when comparing EO or dexamethasone-treated groups with the vehicle-treated group.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835072&req=5

pone.0153643.g004: Effects of C. limon, C. limonia and C. aurantifolia essential oils on carrageenan-induced protein extravasation and nitric oxide (NO) production in a subcutaneous air pouch (SAP).Animals were pre-treated with various doses (10, 30 or 100 mg/kg, p.o.) of EO, dexamethasone (5 mg/kg, i.p.) or vehicle. The results are presented as the mean ± S.D. (n = 10 per group). Statistical significance was calculated by ANOVA followed by Bonferroni’s test. #P < 0.05 when comparing the carrageenan-injected group with the PBS-injected group and *P < 0.05 when comparing EO or dexamethasone-treated groups with the vehicle-treated group.

Mentions: Because both EOs significantly reduced cell migration into the SAP, we decided to further analyze other parameters present in the inflammatory processes induced by carrageenan. We therefore measured the amount of nitric oxide (NO) produced and the amount of protein extravasated to the exudate in the cavity. Both C. limon, C. limonia and C. aurantifolia EOs significantly reduced the amount of protein extravasated and NO produced in all three doses evaluated with results similar to those obtained after pretreatment of animals with dexamethasone (Fig 4).


Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

Amorim JL, Simas DL, Pinheiro MM, Moreno DS, Alviano CS, da Silva AJ, Fernandes PD - PLoS ONE (2016)

Effects of C. limon, C. limonia and C. aurantifolia essential oils on carrageenan-induced protein extravasation and nitric oxide (NO) production in a subcutaneous air pouch (SAP).Animals were pre-treated with various doses (10, 30 or 100 mg/kg, p.o.) of EO, dexamethasone (5 mg/kg, i.p.) or vehicle. The results are presented as the mean ± S.D. (n = 10 per group). Statistical significance was calculated by ANOVA followed by Bonferroni’s test. #P < 0.05 when comparing the carrageenan-injected group with the PBS-injected group and *P < 0.05 when comparing EO or dexamethasone-treated groups with the vehicle-treated group.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835072&req=5

pone.0153643.g004: Effects of C. limon, C. limonia and C. aurantifolia essential oils on carrageenan-induced protein extravasation and nitric oxide (NO) production in a subcutaneous air pouch (SAP).Animals were pre-treated with various doses (10, 30 or 100 mg/kg, p.o.) of EO, dexamethasone (5 mg/kg, i.p.) or vehicle. The results are presented as the mean ± S.D. (n = 10 per group). Statistical significance was calculated by ANOVA followed by Bonferroni’s test. #P < 0.05 when comparing the carrageenan-injected group with the PBS-injected group and *P < 0.05 when comparing EO or dexamethasone-treated groups with the vehicle-treated group.
Mentions: Because both EOs significantly reduced cell migration into the SAP, we decided to further analyze other parameters present in the inflammatory processes induced by carrageenan. We therefore measured the amount of nitric oxide (NO) produced and the amount of protein extravasated to the exudate in the cavity. Both C. limon, C. limonia and C. aurantifolia EOs significantly reduced the amount of protein extravasated and NO produced in all three doses evaluated with results similar to those obtained after pretreatment of animals with dexamethasone (Fig 4).

Bottom Line: These effects were also obtained with similar amounts of pure limonene.Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral.Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

View Article: PubMed Central - PubMed

Affiliation: Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil.

ABSTRACT
Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

No MeSH data available.


Related in: MedlinePlus