Limits...
Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

Amorim JL, Simas DL, Pinheiro MM, Moreno DS, Alviano CS, da Silva AJ, Fernandes PD - PLoS ONE (2016)

Bottom Line: These effects were also obtained with similar amounts of pure limonene.Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral.Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

View Article: PubMed Central - PubMed

Affiliation: Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil.

ABSTRACT
Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

No MeSH data available.


Related in: MedlinePlus

Effects of C. limon, C. latifolia, C. limonia and C. aurantifolia essential oils on the formalin-induced licking response in mice.Animals were pre-treated with oral doses of 100 mg/kg dose of each essential oil or vehicle. The results are presented as the mean ± S.D. (n = 6 per group) of the time that the animal spent licking the formalin-injected paw. Statistical significance was calculated by ANOVA followed by Bonferroni's test. *P < 0.05 when compared to vehicle-treated mice.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835072&req=5

pone.0153643.g001: Effects of C. limon, C. latifolia, C. limonia and C. aurantifolia essential oils on the formalin-induced licking response in mice.Animals were pre-treated with oral doses of 100 mg/kg dose of each essential oil or vehicle. The results are presented as the mean ± S.D. (n = 6 per group) of the time that the animal spent licking the formalin-injected paw. Statistical significance was calculated by ANOVA followed by Bonferroni's test. *P < 0.05 when compared to vehicle-treated mice.

Mentions: In order to evaluate possible anti-inflammatory or antinociceptive effects of the EOs obtained from C. limon, C. aurantifolia, C. latifolia and C. limonia, the first model used was the formalin-induced paw licking. After subplantar injection of formalin (2%), an intense licking behavior divided in two distinct phases was observed. The first phase developed during the first 5 minutes after formalin injection, with mice in the control group continuing to lick the paw for 41.3 ± 5 seconds. The second phase developed between 15 and 30 minutes after formalin injection, with mice continuing to lick the injected paw for 143.8 ± 15.7 seconds. None of EO inhibited the 1st phase, while pre-treatment of the mice with 100 mg/kg of each EO resulted in a significant inhibition of the 2nd phase of formalin-induced licking for the C. limon, C. limonia and C. aurantifolia EOs (Fig 1). To rule out a possible central antinociceptive activity from the EOs, we also evaluated their effects in the hot plate model. Even the highest dose (100 mg/kg) of each EO did not demonstrate any antinociceptive activity in this model, indicating that there is no central effect (S1 Fig).


Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

Amorim JL, Simas DL, Pinheiro MM, Moreno DS, Alviano CS, da Silva AJ, Fernandes PD - PLoS ONE (2016)

Effects of C. limon, C. latifolia, C. limonia and C. aurantifolia essential oils on the formalin-induced licking response in mice.Animals were pre-treated with oral doses of 100 mg/kg dose of each essential oil or vehicle. The results are presented as the mean ± S.D. (n = 6 per group) of the time that the animal spent licking the formalin-injected paw. Statistical significance was calculated by ANOVA followed by Bonferroni's test. *P < 0.05 when compared to vehicle-treated mice.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835072&req=5

pone.0153643.g001: Effects of C. limon, C. latifolia, C. limonia and C. aurantifolia essential oils on the formalin-induced licking response in mice.Animals were pre-treated with oral doses of 100 mg/kg dose of each essential oil or vehicle. The results are presented as the mean ± S.D. (n = 6 per group) of the time that the animal spent licking the formalin-injected paw. Statistical significance was calculated by ANOVA followed by Bonferroni's test. *P < 0.05 when compared to vehicle-treated mice.
Mentions: In order to evaluate possible anti-inflammatory or antinociceptive effects of the EOs obtained from C. limon, C. aurantifolia, C. latifolia and C. limonia, the first model used was the formalin-induced paw licking. After subplantar injection of formalin (2%), an intense licking behavior divided in two distinct phases was observed. The first phase developed during the first 5 minutes after formalin injection, with mice in the control group continuing to lick the paw for 41.3 ± 5 seconds. The second phase developed between 15 and 30 minutes after formalin injection, with mice continuing to lick the injected paw for 143.8 ± 15.7 seconds. None of EO inhibited the 1st phase, while pre-treatment of the mice with 100 mg/kg of each EO resulted in a significant inhibition of the 2nd phase of formalin-induced licking for the C. limon, C. limonia and C. aurantifolia EOs (Fig 1). To rule out a possible central antinociceptive activity from the EOs, we also evaluated their effects in the hot plate model. Even the highest dose (100 mg/kg) of each EO did not demonstrate any antinociceptive activity in this model, indicating that there is no central effect (S1 Fig).

Bottom Line: These effects were also obtained with similar amounts of pure limonene.Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral.Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

View Article: PubMed Central - PubMed

Affiliation: Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil.

ABSTRACT
Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia.

No MeSH data available.


Related in: MedlinePlus