Limits...
The Biokinetic Spectrum for Temperature.

Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T - PLoS ONE (2016)

Bottom Line: We found another peak at 67°C and a steady decline in maximum rates thereafter.We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins.The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

View Article: PubMed Central - PubMed

Affiliation: Tasmanian Institute of Agriculture / School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.

ABSTRACT
We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

No MeSH data available.


Related in: MedlinePlus

Shown are the occurrences of microbial phyla by Topt.The horizontal lines indicate the temperature span of each phylum. The circles indicate the occurrence of strains at each temperature and their diameters are proportional to the square root of their prevalence. The vertical block indicates the approximate position of the MTG.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835062&req=5

pone.0153343.g010: Shown are the occurrences of microbial phyla by Topt.The horizontal lines indicate the temperature span of each phylum. The circles indicate the occurrence of strains at each temperature and their diameters are proportional to the square root of their prevalence. The vertical block indicates the approximate position of the MTG.

Mentions: We show in Fig 10 the prevalence of microbial strains within phyla at each temperature along with the approximate location of the MTG. There were no obvious association of microbial phyla with the MTG (Fig 10). The spans of several phlya terminated within the MTG but only one was confined to it (Deferribacteres). The most populous within the MTG are Firmicutes and Euryarchaeota.


The Biokinetic Spectrum for Temperature.

Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T - PLoS ONE (2016)

Shown are the occurrences of microbial phyla by Topt.The horizontal lines indicate the temperature span of each phylum. The circles indicate the occurrence of strains at each temperature and their diameters are proportional to the square root of their prevalence. The vertical block indicates the approximate position of the MTG.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835062&req=5

pone.0153343.g010: Shown are the occurrences of microbial phyla by Topt.The horizontal lines indicate the temperature span of each phylum. The circles indicate the occurrence of strains at each temperature and their diameters are proportional to the square root of their prevalence. The vertical block indicates the approximate position of the MTG.
Mentions: We show in Fig 10 the prevalence of microbial strains within phyla at each temperature along with the approximate location of the MTG. There were no obvious association of microbial phyla with the MTG (Fig 10). The spans of several phlya terminated within the MTG but only one was confined to it (Deferribacteres). The most populous within the MTG are Firmicutes and Euryarchaeota.

Bottom Line: We found another peak at 67°C and a steady decline in maximum rates thereafter.We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins.The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

View Article: PubMed Central - PubMed

Affiliation: Tasmanian Institute of Agriculture / School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.

ABSTRACT
We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

No MeSH data available.


Related in: MedlinePlus