Limits...
The Biokinetic Spectrum for Temperature.

Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T - PLoS ONE (2016)

Bottom Line: We found another peak at 67°C and a steady decline in maximum rates thereafter.We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins.The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

View Article: PubMed Central - PubMed

Affiliation: Tasmanian Institute of Agriculture / School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.

ABSTRACT
We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

No MeSH data available.


Related in: MedlinePlus

The biokinetic spectrum for temperature.The observed rate of growth for all 1627 strains versus temperature consisting of 10956 data points. We highlight as a visual indication the distribution of the data using dashed lines labeled ascending curve and descending curve. We indicate the location of the Mesophile-Thermophile Gap (MTG) described in the text and of a possible secondary peak. We also show an examples of growth curves for three strains (dashed red), and the curve described by Eppley [8] (solid green) and over the same temperature range he used. The inset shows a histogram of Topt of the strains.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4835062&req=5

pone.0153343.g001: The biokinetic spectrum for temperature.The observed rate of growth for all 1627 strains versus temperature consisting of 10956 data points. We highlight as a visual indication the distribution of the data using dashed lines labeled ascending curve and descending curve. We indicate the location of the Mesophile-Thermophile Gap (MTG) described in the text and of a possible secondary peak. We also show an examples of growth curves for three strains (dashed red), and the curve described by Eppley [8] (solid green) and over the same temperature range he used. The inset shows a histogram of Topt of the strains.

Mentions: We began by collating the data shown in Fig 1 from the peer-reviewed literature. We collated the data by conducting intensive and regular searches to locate studies reporting temperature-dependent growth rates. The data consist of a collation of data sets for organisms grown or cultured at different temperatures. We use the word strain rather than species or taxa. This is because some data sets are of a single species grown under different conditions, or the same species grown by different researchers. The strains are largely unicellular organisms but there are also some multicellular organisms. There were 1627 strains represented and a total of 10956 observations. Many strains were represented by growth curves consisting of multiple points, while other strains appeared only as a single data point. We scaled all the growth rates to the same units, which was growth per minute versus temperature in Celsius. It was not our intention to obtain a data set that contained a random sample of strains since that was not, in any case, possible when considering the whole of life. Instead, we aimed to include as wide a range of strains as possible. This meant that we did not eliminate strains grown in suboptimal conditions and that we were more likely to include culturable strains of economic, veterinary, agricultural, or medical importance. Since random data were unavailable we proceeded by examining the statistical structure of the data.


The Biokinetic Spectrum for Temperature.

Corkrey R, McMeekin TA, Bowman JP, Ratkowsky DA, Olley J, Ross T - PLoS ONE (2016)

The biokinetic spectrum for temperature.The observed rate of growth for all 1627 strains versus temperature consisting of 10956 data points. We highlight as a visual indication the distribution of the data using dashed lines labeled ascending curve and descending curve. We indicate the location of the Mesophile-Thermophile Gap (MTG) described in the text and of a possible secondary peak. We also show an examples of growth curves for three strains (dashed red), and the curve described by Eppley [8] (solid green) and over the same temperature range he used. The inset shows a histogram of Topt of the strains.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4835062&req=5

pone.0153343.g001: The biokinetic spectrum for temperature.The observed rate of growth for all 1627 strains versus temperature consisting of 10956 data points. We highlight as a visual indication the distribution of the data using dashed lines labeled ascending curve and descending curve. We indicate the location of the Mesophile-Thermophile Gap (MTG) described in the text and of a possible secondary peak. We also show an examples of growth curves for three strains (dashed red), and the curve described by Eppley [8] (solid green) and over the same temperature range he used. The inset shows a histogram of Topt of the strains.
Mentions: We began by collating the data shown in Fig 1 from the peer-reviewed literature. We collated the data by conducting intensive and regular searches to locate studies reporting temperature-dependent growth rates. The data consist of a collation of data sets for organisms grown or cultured at different temperatures. We use the word strain rather than species or taxa. This is because some data sets are of a single species grown under different conditions, or the same species grown by different researchers. The strains are largely unicellular organisms but there are also some multicellular organisms. There were 1627 strains represented and a total of 10956 observations. Many strains were represented by growth curves consisting of multiple points, while other strains appeared only as a single data point. We scaled all the growth rates to the same units, which was growth per minute versus temperature in Celsius. It was not our intention to obtain a data set that contained a random sample of strains since that was not, in any case, possible when considering the whole of life. Instead, we aimed to include as wide a range of strains as possible. This meant that we did not eliminate strains grown in suboptimal conditions and that we were more likely to include culturable strains of economic, veterinary, agricultural, or medical importance. Since random data were unavailable we proceeded by examining the statistical structure of the data.

Bottom Line: We found another peak at 67°C and a steady decline in maximum rates thereafter.We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins.The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

View Article: PubMed Central - PubMed

Affiliation: Tasmanian Institute of Agriculture / School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.

ABSTRACT
We identify and describe the distribution of temperature-dependent specific growth rates for life on Earth, which we term the biokinetic spectrum for temperature. The spectrum has the potential to provide for more robust modeling in thermal ecology since any conclusions derived from it will be based on observed data rather than using theoretical assumptions. It may also provide constraints for systems biology model predictions and provide insights in physiology. The spectrum has a Δ-shape with a sharp peak at around 42°C. At higher temperatures up to 60°C there was a gap of attenuated growth rates. We found another peak at 67°C and a steady decline in maximum rates thereafter. By using Bayesian quantile regression to summarise and explore the data we were able to conclude that the gap represented an actual biological transition between mesophiles and thermophiles that we term the Mesophile-Thermophile Gap (MTG). We have not identified any organism that grows above the maximum rate of the spectrum. We used a thermodynamic model to recover the Δ-shape, suggesting that the growth rate limits arise from a trade-off between activity and stability of proteins. The spectrum provides underpinning principles that will find utility in models concerned with the thermal responses of biological processes.

No MeSH data available.


Related in: MedlinePlus