Limits...
Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity.

Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W - Genome Biol. (2016)

Bottom Line: Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation.Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

View Article: PubMed Central - PubMed

Affiliation: Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.

ABSTRACT
Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

No MeSH data available.


Future applications of single-cell epigenomics. The full potential of emerging single-cell epigenomic techniques will be realized through integration with transcriptome and genome sequencing. Single-cell multi-omics will be applied to biological questions involving the molecular mechanisms of epigenetic regulation (e.g., the functional consequences of rare DNA modifications), intercellular heterogeneity, and rare cell types (e.g., in early development). scATAC-seq single cell assay for transposase-accessible chromatin, scBS-seq single-cell bisulfite sequencing, scChIP-seq single-cell chromatin immunoprecipitation followed by sequencing, scDNase-seq single-cell DNase sequencing, scHiC single-cell HiC, scRRBS single-cell reduced representation bisulfite sequencing
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4834828&req=5

Fig2: Future applications of single-cell epigenomics. The full potential of emerging single-cell epigenomic techniques will be realized through integration with transcriptome and genome sequencing. Single-cell multi-omics will be applied to biological questions involving the molecular mechanisms of epigenetic regulation (e.g., the functional consequences of rare DNA modifications), intercellular heterogeneity, and rare cell types (e.g., in early development). scATAC-seq single cell assay for transposase-accessible chromatin, scBS-seq single-cell bisulfite sequencing, scChIP-seq single-cell chromatin immunoprecipitation followed by sequencing, scDNase-seq single-cell DNase sequencing, scHiC single-cell HiC, scRRBS single-cell reduced representation bisulfite sequencing

Mentions: In conclusion, the field of single-cell epigenomics is in its infancy but with the rapid pace of technological development and the increasingly recognized importance of intercellular heterogeneity we anticipate enormous progress over the next few years. Methods are evolving such that researchers will soon be able to profile multiple epigenetic marks within the same single cell and do so in combination with transcriptional and genetic information (Fig. 2). Correlations between features at precise genomic locations will lead to a more refined appreciation of how epigenetic processes interact with one another to control gene expression. Ultimately this has the potential to transform our understanding of how the phenotype of the cell is maintained and how it is perturbed in disease—a subject that is fundamental to biology.Fig. 2


Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity.

Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W - Genome Biol. (2016)

Future applications of single-cell epigenomics. The full potential of emerging single-cell epigenomic techniques will be realized through integration with transcriptome and genome sequencing. Single-cell multi-omics will be applied to biological questions involving the molecular mechanisms of epigenetic regulation (e.g., the functional consequences of rare DNA modifications), intercellular heterogeneity, and rare cell types (e.g., in early development). scATAC-seq single cell assay for transposase-accessible chromatin, scBS-seq single-cell bisulfite sequencing, scChIP-seq single-cell chromatin immunoprecipitation followed by sequencing, scDNase-seq single-cell DNase sequencing, scHiC single-cell HiC, scRRBS single-cell reduced representation bisulfite sequencing
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4834828&req=5

Fig2: Future applications of single-cell epigenomics. The full potential of emerging single-cell epigenomic techniques will be realized through integration with transcriptome and genome sequencing. Single-cell multi-omics will be applied to biological questions involving the molecular mechanisms of epigenetic regulation (e.g., the functional consequences of rare DNA modifications), intercellular heterogeneity, and rare cell types (e.g., in early development). scATAC-seq single cell assay for transposase-accessible chromatin, scBS-seq single-cell bisulfite sequencing, scChIP-seq single-cell chromatin immunoprecipitation followed by sequencing, scDNase-seq single-cell DNase sequencing, scHiC single-cell HiC, scRRBS single-cell reduced representation bisulfite sequencing
Mentions: In conclusion, the field of single-cell epigenomics is in its infancy but with the rapid pace of technological development and the increasingly recognized importance of intercellular heterogeneity we anticipate enormous progress over the next few years. Methods are evolving such that researchers will soon be able to profile multiple epigenetic marks within the same single cell and do so in combination with transcriptional and genetic information (Fig. 2). Correlations between features at precise genomic locations will lead to a more refined appreciation of how epigenetic processes interact with one another to control gene expression. Ultimately this has the potential to transform our understanding of how the phenotype of the cell is maintained and how it is perturbed in disease—a subject that is fundamental to biology.Fig. 2

Bottom Line: Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation.Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

View Article: PubMed Central - PubMed

Affiliation: Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.

ABSTRACT
Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

No MeSH data available.