Limits...
Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic GroEL protein involved in biofilm formation.

Yi L, Wang Y, Ma Z, Lin HX, Xu B, Grenier D, Fan HJ, Lu CP - Vet. Res. (2016)

Bottom Line: Biofilm formation by this bacterium has been previously reported.In this study, we used an immunoproteomic approach to search for immunogenic proteins expressed by biofilm-grown S. equi spp. zooepidemicus.Seventeen immunoreactive proteins were found, of which nine common immunoreactive proteins were identified in planktonic and biofilm-grown bacteria.

View Article: PubMed Central - PubMed

Affiliation: Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.

ABSTRACT
Streptococcus equi ssp. zooepidemicus (S. equi spp. zooepidemicus) is an opportunistic pathogen that causes major economic losses in the swine industry in China and is also a threat for human health. Biofilm formation by this bacterium has been previously reported. In this study, we used an immunoproteomic approach to search for immunogenic proteins expressed by biofilm-grown S. equi spp. zooepidemicus. Seventeen immunoreactive proteins were found, of which nine common immunoreactive proteins were identified in planktonic and biofilm-grown bacteria. The immunogenicity and protective efficacy of the S. equi spp. zooepidemicus immunoreactive GroEL chaperone protein was further investigated in mice. The protein was expressed in vivo and elicited high antibody titers following S. equi spp. zooepidemicus infections of mice. An animal challenge experiment with S. equi spp. zooepidemicus showed that 75% of mice immunized with the GroEL protein were protected. Using in vitro biofilm inhibition assays, evidence was obtained that the chaperonin GroEL may represent a promising target for the prevention and treatment of persistent S. equi spp. zooepidemicus biofilm infections. In summary, our results suggest that the recombinant GroEL protein, which is involved in biofilm formation, may efficiently stimulate an immune response, which protects against S. equi spp. zooepidemicus infections. It may therefore be a candidate of interest to be included in vaccines against S. equi spp. zooepidemicus infections.

No MeSH data available.


Related in: MedlinePlus

Quantitative microtiter plate assay for biofilm production byS. equispp.zooepidemicus. Biofilm formation was evaluated by monitoring the A595 nm following crystal violet staining of bacterial cultures. The columns represent the means and standard deviations of three experiments. A Biofilm formation in THB medium (control); B Biofilm formation in THB medium supplemented with normal mouse serum; C Biofilm formation in THB medium supplemented with mouse rGroEL-antiserum; D THB medium. Student’s t-test was performed for the statistical significance analysis. Biofilm formation in THB medium supplemented with anti-rGroEL serum (C) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (A) or in THB medium supplemented with non-immunized pathogen-free mouse serum (B). No significant differences were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05).
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4834820&req=5

Fig5: Quantitative microtiter plate assay for biofilm production byS. equispp.zooepidemicus. Biofilm formation was evaluated by monitoring the A595 nm following crystal violet staining of bacterial cultures. The columns represent the means and standard deviations of three experiments. A Biofilm formation in THB medium (control); B Biofilm formation in THB medium supplemented with normal mouse serum; C Biofilm formation in THB medium supplemented with mouse rGroEL-antiserum; D THB medium. Student’s t-test was performed for the statistical significance analysis. Biofilm formation in THB medium supplemented with anti-rGroEL serum (C) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (A) or in THB medium supplemented with non-immunized pathogen-free mouse serum (B). No significant differences were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05).

Mentions: Biofilm formation by S. equi spp. zooepidemicus was assessed in a microplate assay and crystal violet staining. Biofilm formation by S. equi spp. zooepidemicus cultured in THB medium supplemented with anti-rGroEL serum (0.32 ± 0.06) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (1.11 ± 0.05) or in THB medium supplemented with non-immunized pathogen-free mouse serum (0.96 ± 0.10). No significant differences in A595 nm were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05). These results suggest that other components found in blood serum had no inhibitory effect on S. equi spp. zooepidemicus growth or biofilm production and that the anti-rGroEL antibody had an inhibitory effect on biofilm production (Figure 5).Figure 5


Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic GroEL protein involved in biofilm formation.

Yi L, Wang Y, Ma Z, Lin HX, Xu B, Grenier D, Fan HJ, Lu CP - Vet. Res. (2016)

Quantitative microtiter plate assay for biofilm production byS. equispp.zooepidemicus. Biofilm formation was evaluated by monitoring the A595 nm following crystal violet staining of bacterial cultures. The columns represent the means and standard deviations of three experiments. A Biofilm formation in THB medium (control); B Biofilm formation in THB medium supplemented with normal mouse serum; C Biofilm formation in THB medium supplemented with mouse rGroEL-antiserum; D THB medium. Student’s t-test was performed for the statistical significance analysis. Biofilm formation in THB medium supplemented with anti-rGroEL serum (C) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (A) or in THB medium supplemented with non-immunized pathogen-free mouse serum (B). No significant differences were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05).
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4834820&req=5

Fig5: Quantitative microtiter plate assay for biofilm production byS. equispp.zooepidemicus. Biofilm formation was evaluated by monitoring the A595 nm following crystal violet staining of bacterial cultures. The columns represent the means and standard deviations of three experiments. A Biofilm formation in THB medium (control); B Biofilm formation in THB medium supplemented with normal mouse serum; C Biofilm formation in THB medium supplemented with mouse rGroEL-antiserum; D THB medium. Student’s t-test was performed for the statistical significance analysis. Biofilm formation in THB medium supplemented with anti-rGroEL serum (C) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (A) or in THB medium supplemented with non-immunized pathogen-free mouse serum (B). No significant differences were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05).
Mentions: Biofilm formation by S. equi spp. zooepidemicus was assessed in a microplate assay and crystal violet staining. Biofilm formation by S. equi spp. zooepidemicus cultured in THB medium supplemented with anti-rGroEL serum (0.32 ± 0.06) was significantly lower (P < 0.01) than that of S. equi spp. zooepidemicus cultured in THB medium alone (1.11 ± 0.05) or in THB medium supplemented with non-immunized pathogen-free mouse serum (0.96 ± 0.10). No significant differences in A595 nm were found between S. equi spp. zooepidemicus cultured in THB medium alone and S. equi spp. zooepidemicus cultured in the THB medium supplemented with non-immunized mouse serum (P > 0.05). These results suggest that other components found in blood serum had no inhibitory effect on S. equi spp. zooepidemicus growth or biofilm production and that the anti-rGroEL antibody had an inhibitory effect on biofilm production (Figure 5).Figure 5

Bottom Line: Biofilm formation by this bacterium has been previously reported.In this study, we used an immunoproteomic approach to search for immunogenic proteins expressed by biofilm-grown S. equi spp. zooepidemicus.Seventeen immunoreactive proteins were found, of which nine common immunoreactive proteins were identified in planktonic and biofilm-grown bacteria.

View Article: PubMed Central - PubMed

Affiliation: Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.

ABSTRACT
Streptococcus equi ssp. zooepidemicus (S. equi spp. zooepidemicus) is an opportunistic pathogen that causes major economic losses in the swine industry in China and is also a threat for human health. Biofilm formation by this bacterium has been previously reported. In this study, we used an immunoproteomic approach to search for immunogenic proteins expressed by biofilm-grown S. equi spp. zooepidemicus. Seventeen immunoreactive proteins were found, of which nine common immunoreactive proteins were identified in planktonic and biofilm-grown bacteria. The immunogenicity and protective efficacy of the S. equi spp. zooepidemicus immunoreactive GroEL chaperone protein was further investigated in mice. The protein was expressed in vivo and elicited high antibody titers following S. equi spp. zooepidemicus infections of mice. An animal challenge experiment with S. equi spp. zooepidemicus showed that 75% of mice immunized with the GroEL protein were protected. Using in vitro biofilm inhibition assays, evidence was obtained that the chaperonin GroEL may represent a promising target for the prevention and treatment of persistent S. equi spp. zooepidemicus biofilm infections. In summary, our results suggest that the recombinant GroEL protein, which is involved in biofilm formation, may efficiently stimulate an immune response, which protects against S. equi spp. zooepidemicus infections. It may therefore be a candidate of interest to be included in vaccines against S. equi spp. zooepidemicus infections.

No MeSH data available.


Related in: MedlinePlus