Limits...
Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).

Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeckers J, Flechtner HH, Krauel K - Front Cell Neurosci (2016)

Bottom Line: The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation.Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed.ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group.

View Article: PubMed Central - PubMed

Affiliation: Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany.

ABSTRACT
The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.

No MeSH data available.


Related in: MedlinePlus

Computer simulation of the utilized tDCS electrode settings. Current density concentrations are visualized on brain surface of the employed pediatric head model. The current density values are peaking locally in frontal/temporal (maximum: 0.12 A/m2), brain stem and lower cerebellar (near foramen magnum) regions.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834583&req=5

Figure 4: Computer simulation of the utilized tDCS electrode settings. Current density concentrations are visualized on brain surface of the employed pediatric head model. The current density values are peaking locally in frontal/temporal (maximum: 0.12 A/m2), brain stem and lower cerebellar (near foramen magnum) regions.

Mentions: Figure 4 shows that the computer model predicted current density concentrations over right frontal/temporal regions. In more detail, the anodal current flew through scalp tissue, while a fraction entered skull/CSF to reach brain tissue at right frontal/temporal areas. The stimulation estimated higher current density concentrations at brain stem/lower cerebellum close to the foramen magnum. Some amount of that current might have left the cranium through the foramen magnum, as indicated in Eichelbaum et al. (2014), flowing further toward the cathodal electrode.


Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).

Breitling C, Zaehle T, Dannhauer M, Bonath B, Tegelbeckers J, Flechtner HH, Krauel K - Front Cell Neurosci (2016)

Computer simulation of the utilized tDCS electrode settings. Current density concentrations are visualized on brain surface of the employed pediatric head model. The current density values are peaking locally in frontal/temporal (maximum: 0.12 A/m2), brain stem and lower cerebellar (near foramen magnum) regions.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834583&req=5

Figure 4: Computer simulation of the utilized tDCS electrode settings. Current density concentrations are visualized on brain surface of the employed pediatric head model. The current density values are peaking locally in frontal/temporal (maximum: 0.12 A/m2), brain stem and lower cerebellar (near foramen magnum) regions.
Mentions: Figure 4 shows that the computer model predicted current density concentrations over right frontal/temporal regions. In more detail, the anodal current flew through scalp tissue, while a fraction entered skull/CSF to reach brain tissue at right frontal/temporal areas. The stimulation estimated higher current density concentrations at brain stem/lower cerebellum close to the foramen magnum. Some amount of that current might have left the cranium through the foramen magnum, as indicated in Eichelbaum et al. (2014), flowing further toward the cathodal electrode.

Bottom Line: The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation.Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed.ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group.

View Article: PubMed Central - PubMed

Affiliation: Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg Magdeburg, Germany.

ABSTRACT
The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.

No MeSH data available.


Related in: MedlinePlus