Limits...
Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement.

Xu R, Xia H, He W, Li Z, Zhao J, Liu B, Wang Y, Lei Q, Kong Y, Bai Y, Yao Z, Yan R, Li H, Zhan R, Yang S, Luo G, Wu J - Sci Rep (2016)

Bottom Line: Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies.It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m(2)·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model.Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model.

View Article: PubMed Central - PubMed

Affiliation: Institute of Burn Research, Southwest Hospital; State Key Lab of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University, Chongqing 400038, China.

ABSTRACT
A desirable microenvironment is essential for wound healing, in which an ideal moisture content is one of the most important factors. The fundamental function and requirement for wound dressings is to keep the wound at an optimal moisture. Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies. It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m(2)·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model. Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model. Our finds may be helpful in the design of wound dressing for wound regeneration in the future.

No MeSH data available.


Related in: MedlinePlus

SEM fractographs of the PU membranes showing their porous structure.The porosity of PU membrane could be regulated by changing the PU/DMF/sodium citrate ratio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834567&req=5

f2: SEM fractographs of the PU membranes showing their porous structure.The porosity of PU membrane could be regulated by changing the PU/DMF/sodium citrate ratio.

Mentions: In this study, microporous PU membranes with graded WVTRs were prepared by changing the porosity of the membrane (Figs 1 and 2). The PU/n,n-dimethylformamide (DMF)/sodium citrate ratios of 25 g/200 ml/75 g, 25 g/200 ml/55 g, 25 g/200 ml/45 g and 40 g/200 ml/40 g corresponded to membrane average porosities of 76.9%, 67.6%, 63.6% and 28.5%, respectively. Meanwhile, the corresponding average WVTRs of the membranes were 4025.8 (extremely high permeability, EHP), 3282.0 (high permeability, HP), 2028.3 (medium permeability, MP) and 954.8 g/m2·24 h (low permeability, LP), respectively (Fig. 1). The WVTR of the pure PU membrane was 50.2 g/m2·24 h (extremely low permeability, ELP; Fig. 1). The water uptake abilities of the membranes were very similar, with the exception of the ELP-PU membrane, which was made of pure PU.


Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement.

Xu R, Xia H, He W, Li Z, Zhao J, Liu B, Wang Y, Lei Q, Kong Y, Bai Y, Yao Z, Yan R, Li H, Zhan R, Yang S, Luo G, Wu J - Sci Rep (2016)

SEM fractographs of the PU membranes showing their porous structure.The porosity of PU membrane could be regulated by changing the PU/DMF/sodium citrate ratio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834567&req=5

f2: SEM fractographs of the PU membranes showing their porous structure.The porosity of PU membrane could be regulated by changing the PU/DMF/sodium citrate ratio.
Mentions: In this study, microporous PU membranes with graded WVTRs were prepared by changing the porosity of the membrane (Figs 1 and 2). The PU/n,n-dimethylformamide (DMF)/sodium citrate ratios of 25 g/200 ml/75 g, 25 g/200 ml/55 g, 25 g/200 ml/45 g and 40 g/200 ml/40 g corresponded to membrane average porosities of 76.9%, 67.6%, 63.6% and 28.5%, respectively. Meanwhile, the corresponding average WVTRs of the membranes were 4025.8 (extremely high permeability, EHP), 3282.0 (high permeability, HP), 2028.3 (medium permeability, MP) and 954.8 g/m2·24 h (low permeability, LP), respectively (Fig. 1). The WVTR of the pure PU membrane was 50.2 g/m2·24 h (extremely low permeability, ELP; Fig. 1). The water uptake abilities of the membranes were very similar, with the exception of the ELP-PU membrane, which was made of pure PU.

Bottom Line: Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies.It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m(2)·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model.Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model.

View Article: PubMed Central - PubMed

Affiliation: Institute of Burn Research, Southwest Hospital; State Key Lab of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University, Chongqing 400038, China.

ABSTRACT
A desirable microenvironment is essential for wound healing, in which an ideal moisture content is one of the most important factors. The fundamental function and requirement for wound dressings is to keep the wound at an optimal moisture. Here, we prepared serial polyurethane (PU) membrane dressings with graded water vapor transmission rates (WVTRs), and the optimal WVTR of the dressing for wound healing was identified by both in vitro and in vivo studies. It was found that the dressing with a WVTR of 2028.3 ± 237.8 g/m(2)·24 h was able to maintain an optimal moisture content for the proliferation and regular function of epidermal cells and fibroblasts in a three-dimensional culture model. Moreover, the dressing with this optimal WTVR was found to be able to promote wound healing in a mouse skin wound model. Our finds may be helpful in the design of wound dressing for wound regeneration in the future.

No MeSH data available.


Related in: MedlinePlus