Limits...
Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics.

Danewalia SS, Sharma G, Thakur S, Singh K - Sci Rep (2016)

Bottom Line: Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions.The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases.The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Materials Science, Thapar University, Patiala-147004, India.

ABSTRACT
Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

No MeSH data available.


Related in: MedlinePlus

Dielectric loss of the R-50 glass-ceramic with frequency at 350 °C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834533&req=5

f8: Dielectric loss of the R-50 glass-ceramic with frequency at 350 °C.

Mentions: Figure 8 represents the variation in dielectric loss (ϵ′′) versus frequency at 350 °C. Absence of any peak confirms that the dielectric permittivity of these glass-ceramics is mainly due to conduction processes. Loss tangent (tan δ) versus frequency at various temperatures is shown in the Fig. 9. tanδ represents the dissipation of energy due to various physical processes (relaxation). These losses are associated with the crystal imperfections, porosity, defects and electrical conduction etc. Glass-ceramics always have higher losses than crystalline counterparts of similar materials due to higher defects44. In the present samples, losses are less than earlier reported glasses formed by conventional minerals45. tanδ increases at lower frequencies and also with temperature. It can be seen that increase in the tanδ at lower frequencies is prominent in R-00, R-25 and R-50. However, it remains almost constant for R-75 and R-100. It again reflects the dominance of modifier concentrations on dielectric properties as well as basic structure. The low dielectric permittivity of the present samples, along with temperature and frequency independence in wide range, make them good candidate for microelectronic applications.


Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics.

Danewalia SS, Sharma G, Thakur S, Singh K - Sci Rep (2016)

Dielectric loss of the R-50 glass-ceramic with frequency at 350 °C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834533&req=5

f8: Dielectric loss of the R-50 glass-ceramic with frequency at 350 °C.
Mentions: Figure 8 represents the variation in dielectric loss (ϵ′′) versus frequency at 350 °C. Absence of any peak confirms that the dielectric permittivity of these glass-ceramics is mainly due to conduction processes. Loss tangent (tan δ) versus frequency at various temperatures is shown in the Fig. 9. tanδ represents the dissipation of energy due to various physical processes (relaxation). These losses are associated with the crystal imperfections, porosity, defects and electrical conduction etc. Glass-ceramics always have higher losses than crystalline counterparts of similar materials due to higher defects44. In the present samples, losses are less than earlier reported glasses formed by conventional minerals45. tanδ increases at lower frequencies and also with temperature. It can be seen that increase in the tanδ at lower frequencies is prominent in R-00, R-25 and R-50. However, it remains almost constant for R-75 and R-100. It again reflects the dominance of modifier concentrations on dielectric properties as well as basic structure. The low dielectric permittivity of the present samples, along with temperature and frequency independence in wide range, make them good candidate for microelectronic applications.

Bottom Line: Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions.The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases.The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Materials Science, Thapar University, Patiala-147004, India.

ABSTRACT
Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

No MeSH data available.


Related in: MedlinePlus