Limits...
Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles.

Wu D, Wang Y, Zhang Y, Ma H, Yan T, Du B, Wei Q - Sci Rep (2016)

Bottom Line: The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1).Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples.This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China.

ABSTRACT
A novel sandwich-type electrochemical immunosensor using the new amino group functionalized silicoaluminophosphates molecular sieves (NH2-SAPO-34) supported Pd/Co nanoparticles (NH2-SAPO-34-Pd/Co NPs) as labels for the detection of bladder cancer biomarker nuclear matrix protein-22 (NMP-22) was developed in this work. The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1). Due to the excellent catalytic activity toward hydrogen peroxide, NH2-SAPO-34-Pd/Co NPs were used as labels and immobilized secondary antibody (Ab2) through adsorption capacity of Pd/Co NPs to protein. The immunosensor displayed a wide linear range (0.001-20 ng/mL) and low detection limit (0.33 pg/mL). Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples. This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers.

No MeSH data available.


Related in: MedlinePlus

Calibration curve of the immunosensor toward different concentrations of NMP-22 (0.001, 0.05, 0.5, 1, 5, 10, 15, 20 ng/mL).Error bar = RSD (n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834490&req=5

f6: Calibration curve of the immunosensor toward different concentrations of NMP-22 (0.001, 0.05, 0.5, 1, 5, 10, 15, 20 ng/mL).Error bar = RSD (n = 5).

Mentions: Under the optimum conditions, the immunosensors using NH2-SAPO-34-Pd/Co NPs as labels were prepared for the detection of different concentrations of NMP-22 in pH 7.0 PBS at −0.4 V. The relationship between the current response toward 5.0 mmol/L H2O2 and NMP-22 concentration was shown in Fig. 6. As can be seen, the current response increased linearly with the increasing concentration of the NMP-22 in the range from 0.001 to 20 ng/mL, with a detection limit of 0.33 pg/mL based on S/N = 3. The detection limit of this immunosensor is significantly lower than other methods434445, as shown in Table 1. The calibration curve was linear with a correlation coefficient of R2 = 0.998 (ΔI = 0.434 c + 9.16).


Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles.

Wu D, Wang Y, Zhang Y, Ma H, Yan T, Du B, Wei Q - Sci Rep (2016)

Calibration curve of the immunosensor toward different concentrations of NMP-22 (0.001, 0.05, 0.5, 1, 5, 10, 15, 20 ng/mL).Error bar = RSD (n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834490&req=5

f6: Calibration curve of the immunosensor toward different concentrations of NMP-22 (0.001, 0.05, 0.5, 1, 5, 10, 15, 20 ng/mL).Error bar = RSD (n = 5).
Mentions: Under the optimum conditions, the immunosensors using NH2-SAPO-34-Pd/Co NPs as labels were prepared for the detection of different concentrations of NMP-22 in pH 7.0 PBS at −0.4 V. The relationship between the current response toward 5.0 mmol/L H2O2 and NMP-22 concentration was shown in Fig. 6. As can be seen, the current response increased linearly with the increasing concentration of the NMP-22 in the range from 0.001 to 20 ng/mL, with a detection limit of 0.33 pg/mL based on S/N = 3. The detection limit of this immunosensor is significantly lower than other methods434445, as shown in Table 1. The calibration curve was linear with a correlation coefficient of R2 = 0.998 (ΔI = 0.434 c + 9.16).

Bottom Line: The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1).Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples.This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China.

ABSTRACT
A novel sandwich-type electrochemical immunosensor using the new amino group functionalized silicoaluminophosphates molecular sieves (NH2-SAPO-34) supported Pd/Co nanoparticles (NH2-SAPO-34-Pd/Co NPs) as labels for the detection of bladder cancer biomarker nuclear matrix protein-22 (NMP-22) was developed in this work. The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1). Due to the excellent catalytic activity toward hydrogen peroxide, NH2-SAPO-34-Pd/Co NPs were used as labels and immobilized secondary antibody (Ab2) through adsorption capacity of Pd/Co NPs to protein. The immunosensor displayed a wide linear range (0.001-20 ng/mL) and low detection limit (0.33 pg/mL). Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples. This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers.

No MeSH data available.


Related in: MedlinePlus