Limits...
Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M - Front Plant Sci (2016)

Bottom Line: This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature.Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides.Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de València Valencia, Spain.

ABSTRACT
Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.

No MeSH data available.


Related in: MedlinePlus

Glycine betaine (GB) accumulation in leaves of D. viscosa and I. crithmoides stressed plants. GB contents after 3 weeks (A) and 6 weeks (B) of treatment with the indicated NaCl concentrations, or after 3 weeks of water stress (C). Values shown are means ± SD (n = 5). Different letters (lowercase for D. viscosa and capital letters for I. crithmoides) over the bars indicate significant differences between treatments for each species according to Tukey test (α = 0.05). Asterisks (*) indicate significant differences between the two species for the same treatment.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834351&req=5

Figure 4: Glycine betaine (GB) accumulation in leaves of D. viscosa and I. crithmoides stressed plants. GB contents after 3 weeks (A) and 6 weeks (B) of treatment with the indicated NaCl concentrations, or after 3 weeks of water stress (C). Values shown are means ± SD (n = 5). Different letters (lowercase for D. viscosa and capital letters for I. crithmoides) over the bars indicate significant differences between treatments for each species according to Tukey test (α = 0.05). Asterisks (*) indicate significant differences between the two species for the same treatment.

Mentions: Plants of the two analyzed species accumulated glycine betaine (GB) in their leaves, as a response to the treatment with increasing NaCl concentrations, but reaching much higher levels in I. crithmoides than in D. viscosa (Figures 4A,B). GB contents in control plants were similar in the two species, about 50 μmol g−1 DW; under the strongest salt stress conditions tested (6 weeks in the presence of 600 mM NaCl), GB levels increased about twofold in D. viscosa, but nearly eight-fold in I. crithmoides (Figure 4B). The high concentrations measured, almost 400 μmol g−1 DW, indicate that GB is the major functional osmolyte in I. crithmoides, responsible for osmotic adjustment in conditions of high soil salinity, as suggested by previous field studies (Gil et al., 2014).


Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M - Front Plant Sci (2016)

Glycine betaine (GB) accumulation in leaves of D. viscosa and I. crithmoides stressed plants. GB contents after 3 weeks (A) and 6 weeks (B) of treatment with the indicated NaCl concentrations, or after 3 weeks of water stress (C). Values shown are means ± SD (n = 5). Different letters (lowercase for D. viscosa and capital letters for I. crithmoides) over the bars indicate significant differences between treatments for each species according to Tukey test (α = 0.05). Asterisks (*) indicate significant differences between the two species for the same treatment.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834351&req=5

Figure 4: Glycine betaine (GB) accumulation in leaves of D. viscosa and I. crithmoides stressed plants. GB contents after 3 weeks (A) and 6 weeks (B) of treatment with the indicated NaCl concentrations, or after 3 weeks of water stress (C). Values shown are means ± SD (n = 5). Different letters (lowercase for D. viscosa and capital letters for I. crithmoides) over the bars indicate significant differences between treatments for each species according to Tukey test (α = 0.05). Asterisks (*) indicate significant differences between the two species for the same treatment.
Mentions: Plants of the two analyzed species accumulated glycine betaine (GB) in their leaves, as a response to the treatment with increasing NaCl concentrations, but reaching much higher levels in I. crithmoides than in D. viscosa (Figures 4A,B). GB contents in control plants were similar in the two species, about 50 μmol g−1 DW; under the strongest salt stress conditions tested (6 weeks in the presence of 600 mM NaCl), GB levels increased about twofold in D. viscosa, but nearly eight-fold in I. crithmoides (Figure 4B). The high concentrations measured, almost 400 μmol g−1 DW, indicate that GB is the major functional osmolyte in I. crithmoides, responsible for osmotic adjustment in conditions of high soil salinity, as suggested by previous field studies (Gil et al., 2014).

Bottom Line: This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature.Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides.Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.

View Article: PubMed Central - PubMed

Affiliation: Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de València Valencia, Spain.

ABSTRACT
Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.

No MeSH data available.


Related in: MedlinePlus