Limits...
A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

Jung RE, Flores RA, Hunter D - Front Psychol (2016)

Bottom Line: We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe).The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus).We also identified compelling evidence suggesting imagination ability linked to decreased volumes involving the nucleus accumbens and regions within the default mode network.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of New MexicoAlbuquerque, NM, USA; Department of Neurosurgery, University of New MexicoAlbuquerque, NM, USA.

ABSTRACT
Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability linked to decreased volumes involving the nucleus accumbens and regions within the default mode network. Future research will be important to assess the stability of this instrument in different populations, as well as the complex interaction between imagination and creativity in the human brain.

No MeSH data available.


Related in: MedlinePlus

Left medial view of average brain surface volumes (gray), and subcortical structures including the Nucleus Accumbens (light brown).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834344&req=5

Figure 2: Left medial view of average brain surface volumes (gray), and subcortical structures including the Nucleus Accumbens (light brown).

Mentions: Finally, we sought to determine anatomical brain correlates of the HIQ, including Factor Scores of Satisfaction, Implementation, and Learning. We regressed all volume measures, as well as subcortical volumes, against each factor controlling for Total Supratentorial volume, sex, and Full Scale Intelligence Score. The total score on the HIQ was predicted by a model that included decreased left nucleus accumbens and increased right lingual volumes (F = 3.3, p = 0.01; r2 = 0.18; Figure 2). A model including decreased volumes in the left posterior cingulate, left superior temporal gyrus, and right precuneus, and increased volume of left caudal middle frontal, right putamen, right rostral middle frontal, right superior frontal gyri predicted Satisfaction scores on the HIQ (F = 5.34, p < 0.001; r2 = 0.44). Scores on the Implementation factor were predicted by a model including decreased volumes of the right medial-orbital frontal gyrus, and right isthmus of the cingulate gyrus, and increased volumes of the left hippocampus, left lingual gyrus, and left isthmus cingulate gyrus (F = 4.46, p < 0.001; r2 = 0.34). Finally, the Learning score was predicted by a model that included decreased volumes of the left nucleus accumbens and left transverse temporal gyrus, and increased volumes of the right lingual gyrus and right hippocampus (F = 5.06, p < 0.001; r2 = 0.33) (Figure 3).


A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

Jung RE, Flores RA, Hunter D - Front Psychol (2016)

Left medial view of average brain surface volumes (gray), and subcortical structures including the Nucleus Accumbens (light brown).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834344&req=5

Figure 2: Left medial view of average brain surface volumes (gray), and subcortical structures including the Nucleus Accumbens (light brown).
Mentions: Finally, we sought to determine anatomical brain correlates of the HIQ, including Factor Scores of Satisfaction, Implementation, and Learning. We regressed all volume measures, as well as subcortical volumes, against each factor controlling for Total Supratentorial volume, sex, and Full Scale Intelligence Score. The total score on the HIQ was predicted by a model that included decreased left nucleus accumbens and increased right lingual volumes (F = 3.3, p = 0.01; r2 = 0.18; Figure 2). A model including decreased volumes in the left posterior cingulate, left superior temporal gyrus, and right precuneus, and increased volume of left caudal middle frontal, right putamen, right rostral middle frontal, right superior frontal gyri predicted Satisfaction scores on the HIQ (F = 5.34, p < 0.001; r2 = 0.44). Scores on the Implementation factor were predicted by a model including decreased volumes of the right medial-orbital frontal gyrus, and right isthmus of the cingulate gyrus, and increased volumes of the left hippocampus, left lingual gyrus, and left isthmus cingulate gyrus (F = 4.46, p < 0.001; r2 = 0.34). Finally, the Learning score was predicted by a model that included decreased volumes of the left nucleus accumbens and left transverse temporal gyrus, and increased volumes of the right lingual gyrus and right hippocampus (F = 5.06, p < 0.001; r2 = 0.33) (Figure 3).

Bottom Line: We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe).The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus).We also identified compelling evidence suggesting imagination ability linked to decreased volumes involving the nucleus accumbens and regions within the default mode network.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of New MexicoAlbuquerque, NM, USA; Department of Neurosurgery, University of New MexicoAlbuquerque, NM, USA.

ABSTRACT
Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability linked to decreased volumes involving the nucleus accumbens and regions within the default mode network. Future research will be important to assess the stability of this instrument in different populations, as well as the complex interaction between imagination and creativity in the human brain.

No MeSH data available.


Related in: MedlinePlus