Limits...
Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

Nutsch VL, Will RG, Robison CL, Martz JR, Tobiansky DJ, Dominguez JM - Front Behav Neurosci (2016)

Bottom Line: Sexually experienced animals also had significantly more D2-positive cells.Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals.Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate.

View Article: PubMed Central - PubMed

Affiliation: Institute for Neuroscience, The University of Texas at Austin Austin, TX, USA.

ABSTRACT
Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

No MeSH data available.


Related in: MedlinePlus

Western immunoblotting analysis of antibody against D2 dopamine receptor protein, raised in rabbit. The ladder depicting molecular weight is on the left of the dorsal striatum (DS), posterior cortex (CTX), liver (LIV), and kidney (KID) samples to the right. Molecular weight of the D2 receptor protein is 51 kDa. Immunoblotting analyses reveals a band at ~50 kDa, in addition to other bands, in the brain samples. This band is absent in both liver and kidney samples.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4834303&req=5

Figure 1: Western immunoblotting analysis of antibody against D2 dopamine receptor protein, raised in rabbit. The ladder depicting molecular weight is on the left of the dorsal striatum (DS), posterior cortex (CTX), liver (LIV), and kidney (KID) samples to the right. Molecular weight of the D2 receptor protein is 51 kDa. Immunoblotting analyses reveals a band at ~50 kDa, in addition to other bands, in the brain samples. This band is absent in both liver and kidney samples.

Mentions: For Western immunoblotting, brain samples were homogenized and purified in RIPA buffer (Pierce) with protease inhibitor tablets (Roche), and protein content was estimated using a NanoDrop system. 10 μg protein load volume was separated by electrophoresis and compared using PrecisionPlus unstained standards (BioRad). As positive controls, brain samples were collected from regions known to have relatively high concentration of D2 receptors, namely the dorsal striatum (DS) and posterior cortex (CTX; Lidow et al., 1989; Meador-Woodruff et al., 1989); negative controls included samples collected from the liver (LIV) and kidney (KID). Samples were transferred to PVDF and exposed to rabbit anti-D2 antibody (1:4000, Millipore) and then goat anti-rabbit HRP secondary (1:30,000, Bio-Rad) in a blocking buffer containing 2% normal goat serum. Bands were visualized using ECL chemiluminescence. Results confirmed the presence of a band at ~50 kDa, however we found additional bands beyond 50 kDa (see Figure 1). Henceforth we designate D2 immuno-positive staining in our experiments as indicative of putative D2-like dopamine receptors.


Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

Nutsch VL, Will RG, Robison CL, Martz JR, Tobiansky DJ, Dominguez JM - Front Behav Neurosci (2016)

Western immunoblotting analysis of antibody against D2 dopamine receptor protein, raised in rabbit. The ladder depicting molecular weight is on the left of the dorsal striatum (DS), posterior cortex (CTX), liver (LIV), and kidney (KID) samples to the right. Molecular weight of the D2 receptor protein is 51 kDa. Immunoblotting analyses reveals a band at ~50 kDa, in addition to other bands, in the brain samples. This band is absent in both liver and kidney samples.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4834303&req=5

Figure 1: Western immunoblotting analysis of antibody against D2 dopamine receptor protein, raised in rabbit. The ladder depicting molecular weight is on the left of the dorsal striatum (DS), posterior cortex (CTX), liver (LIV), and kidney (KID) samples to the right. Molecular weight of the D2 receptor protein is 51 kDa. Immunoblotting analyses reveals a band at ~50 kDa, in addition to other bands, in the brain samples. This band is absent in both liver and kidney samples.
Mentions: For Western immunoblotting, brain samples were homogenized and purified in RIPA buffer (Pierce) with protease inhibitor tablets (Roche), and protein content was estimated using a NanoDrop system. 10 μg protein load volume was separated by electrophoresis and compared using PrecisionPlus unstained standards (BioRad). As positive controls, brain samples were collected from regions known to have relatively high concentration of D2 receptors, namely the dorsal striatum (DS) and posterior cortex (CTX; Lidow et al., 1989; Meador-Woodruff et al., 1989); negative controls included samples collected from the liver (LIV) and kidney (KID). Samples were transferred to PVDF and exposed to rabbit anti-D2 antibody (1:4000, Millipore) and then goat anti-rabbit HRP secondary (1:30,000, Bio-Rad) in a blocking buffer containing 2% normal goat serum. Bands were visualized using ECL chemiluminescence. Results confirmed the presence of a band at ~50 kDa, however we found additional bands beyond 50 kDa (see Figure 1). Henceforth we designate D2 immuno-positive staining in our experiments as indicative of putative D2-like dopamine receptors.

Bottom Line: Sexually experienced animals also had significantly more D2-positive cells.Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals.Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate.

View Article: PubMed Central - PubMed

Affiliation: Institute for Neuroscience, The University of Texas at Austin Austin, TX, USA.

ABSTRACT
Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

No MeSH data available.


Related in: MedlinePlus