Limits...
Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

Jing J, Xu Y, Cao W, Liu C, Gary D, Wang H - Sci Rep (2016)

Bottom Line: Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO).Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies.Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

View Article: PubMed Central - PubMed

Affiliation: Center For Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982, USA.

ABSTRACT
Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

No MeSH data available.


Related in: MedlinePlus

Panel (a) GOES soft X-ray 1–8 Å light curve. The vertical dotted line indicates the time 18:13:22 UT. The SDO/AIA and NST/VIS images shown in panels (b–d) were all taken within 6 s from this time. Panel (b) the full-disk SDO/AIA 1600 Å map. It serves as the reference to register the NST’s FOV with heliographic coordinates. The white box outlines the region of interest (ROI) where the flare occurred. Panel (c) a blend of NST/VIS Hα + 1.0 Å image and a larger SDO/AIA 1600 Å map. The field-of-view (FOV) of panel (c) is the same as the boxed region in panel (b). Panel (d) the zoomed-in view of the NST/VIS image in panel (c). The entire NST/VIS Hα + 1.0Å image sequence can be found as Supplementary Movie 1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4829858&req=5

f1: Panel (a) GOES soft X-ray 1–8 Å light curve. The vertical dotted line indicates the time 18:13:22 UT. The SDO/AIA and NST/VIS images shown in panels (b–d) were all taken within 6 s from this time. Panel (b) the full-disk SDO/AIA 1600 Å map. It serves as the reference to register the NST’s FOV with heliographic coordinates. The white box outlines the region of interest (ROI) where the flare occurred. Panel (c) a blend of NST/VIS Hα + 1.0 Å image and a larger SDO/AIA 1600 Å map. The field-of-view (FOV) of panel (c) is the same as the boxed region in panel (b). Panel (d) the zoomed-in view of the NST/VIS image in panel (c). The entire NST/VIS Hα + 1.0Å image sequence can be found as Supplementary Movie 1.

Mentions: The flare that we discuss in this paper appeared in NOAA active region (AR) 12371 on 2015 June 22, with a peak GOES soft X-ray (SXR) flux at 18:23 UT (Fig. 1a). The flare exhibited a two-ribbon structure as shown in a snapshot ultraviolet (UV) 1600 Å image (at a pixel size of 0″.6) taken by the Atmospheric Imaging Assembly (AIA)26 on the Solar Dynamics Observatory (SDO)27 (Fig. 1b). NST/VIS observations in the Hα 6563 Å line centre and off-bands (±0.6 Å and ±1.0 Å) are also available, each at a time cadence of 28 s. The field-of-view (FOV) of the NST/VIS images is ~57″ × 64″, covering the main portion of the eastern ribbon (Fig. 1c,d). The pixel size of the NST/VIS images is 0″.03 (~20 km), approaching the diffraction limit of the telescope, and 20 times smaller than that of the SDO/AIA UV and EUV images, allowing us to study the fine-scale structures at the chromosphere in unprecedented detail.


Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

Jing J, Xu Y, Cao W, Liu C, Gary D, Wang H - Sci Rep (2016)

Panel (a) GOES soft X-ray 1–8 Å light curve. The vertical dotted line indicates the time 18:13:22 UT. The SDO/AIA and NST/VIS images shown in panels (b–d) were all taken within 6 s from this time. Panel (b) the full-disk SDO/AIA 1600 Å map. It serves as the reference to register the NST’s FOV with heliographic coordinates. The white box outlines the region of interest (ROI) where the flare occurred. Panel (c) a blend of NST/VIS Hα + 1.0 Å image and a larger SDO/AIA 1600 Å map. The field-of-view (FOV) of panel (c) is the same as the boxed region in panel (b). Panel (d) the zoomed-in view of the NST/VIS image in panel (c). The entire NST/VIS Hα + 1.0Å image sequence can be found as Supplementary Movie 1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4829858&req=5

f1: Panel (a) GOES soft X-ray 1–8 Å light curve. The vertical dotted line indicates the time 18:13:22 UT. The SDO/AIA and NST/VIS images shown in panels (b–d) were all taken within 6 s from this time. Panel (b) the full-disk SDO/AIA 1600 Å map. It serves as the reference to register the NST’s FOV with heliographic coordinates. The white box outlines the region of interest (ROI) where the flare occurred. Panel (c) a blend of NST/VIS Hα + 1.0 Å image and a larger SDO/AIA 1600 Å map. The field-of-view (FOV) of panel (c) is the same as the boxed region in panel (b). Panel (d) the zoomed-in view of the NST/VIS image in panel (c). The entire NST/VIS Hα + 1.0Å image sequence can be found as Supplementary Movie 1.
Mentions: The flare that we discuss in this paper appeared in NOAA active region (AR) 12371 on 2015 June 22, with a peak GOES soft X-ray (SXR) flux at 18:23 UT (Fig. 1a). The flare exhibited a two-ribbon structure as shown in a snapshot ultraviolet (UV) 1600 Å image (at a pixel size of 0″.6) taken by the Atmospheric Imaging Assembly (AIA)26 on the Solar Dynamics Observatory (SDO)27 (Fig. 1b). NST/VIS observations in the Hα 6563 Å line centre and off-bands (±0.6 Å and ±1.0 Å) are also available, each at a time cadence of 28 s. The field-of-view (FOV) of the NST/VIS images is ~57″ × 64″, covering the main portion of the eastern ribbon (Fig. 1c,d). The pixel size of the NST/VIS images is 0″.03 (~20 km), approaching the diffraction limit of the telescope, and 20 times smaller than that of the SDO/AIA UV and EUV images, allowing us to study the fine-scale structures at the chromosphere in unprecedented detail.

Bottom Line: Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO).Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies.Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

View Article: PubMed Central - PubMed

Affiliation: Center For Solar-Terrestrial Research, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982, USA.

ABSTRACT
Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

No MeSH data available.


Related in: MedlinePlus