Limits...
External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

Zollinger M, Degache F, Currat G, Pochon L, Peyrot N, Newman CJ, Malatesta D - Front Physiol (2016)

Bottom Line: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP).The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass.Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport Sciences of University of Lausanne, University of Lausanne Lausanne, Switzerland.

ABSTRACT

Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass.

Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds.

Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05).

Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

No MeSH data available.


Related in: MedlinePlus

External (A), potential (B), vertical kinetic (C), lateral kinetic (D) mechanical works at standard walking speed (SWS). UCP, unilateral cerebral palsy adolescents; TD, typically developing adolescents; OG, overground; TM, treadmill; Wext, external mechanical work; Wp, potential mechanical work; Wkv, vertical kinetic mechanical work; Wkl, lateral kinetic mechanical work; *For significant condition (overground vs. treadmill) effect;†For significant group (UCP vs. TD) effect;°For significant interaction (condition × group) effect (P ≤ 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4829600&req=5

Figure 1: External (A), potential (B), vertical kinetic (C), lateral kinetic (D) mechanical works at standard walking speed (SWS). UCP, unilateral cerebral palsy adolescents; TD, typically developing adolescents; OG, overground; TM, treadmill; Wext, external mechanical work; Wp, potential mechanical work; Wkv, vertical kinetic mechanical work; Wkl, lateral kinetic mechanical work; *For significant condition (overground vs. treadmill) effect;†For significant group (UCP vs. TD) effect;°For significant interaction (condition × group) effect (P ≤ 0.05).

Mentions: As shown in Table 4, Wext was significantly higher on the treadmill compared with overground walking (P ≤ 0.012; Figure 1A) and in UCP compared with TD (P ≤ 0.027). R was significantly lower during treadmill than during overground walking in both groups (P = 0.001). There was no significant walking condition effect for Wp (P = 0.36; Figure 1B), β (P = 0.12), and Wk/Wp (P = 0.76). However, Wp and β were significantly higher (P ≤ 0.003 and P ≤ 0.041, respectively) and Wk/Wp was significantly lower (P ≤ 0.012) in UCP than in TD during treadmill and overground walking. Wkv and Wkl showed a significant interaction effect and were significantly higher in treadmill than in overground walking (P ≤ 0.002; Figures 1C,D) and in UCP compared with TD within both walking conditions (P ≤ 0.01). There were no significant differences in Wk, Wkf and α between walking conditions and groups (P ≥ 0.17).


External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

Zollinger M, Degache F, Currat G, Pochon L, Peyrot N, Newman CJ, Malatesta D - Front Physiol (2016)

External (A), potential (B), vertical kinetic (C), lateral kinetic (D) mechanical works at standard walking speed (SWS). UCP, unilateral cerebral palsy adolescents; TD, typically developing adolescents; OG, overground; TM, treadmill; Wext, external mechanical work; Wp, potential mechanical work; Wkv, vertical kinetic mechanical work; Wkl, lateral kinetic mechanical work; *For significant condition (overground vs. treadmill) effect;†For significant group (UCP vs. TD) effect;°For significant interaction (condition × group) effect (P ≤ 0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4829600&req=5

Figure 1: External (A), potential (B), vertical kinetic (C), lateral kinetic (D) mechanical works at standard walking speed (SWS). UCP, unilateral cerebral palsy adolescents; TD, typically developing adolescents; OG, overground; TM, treadmill; Wext, external mechanical work; Wp, potential mechanical work; Wkv, vertical kinetic mechanical work; Wkl, lateral kinetic mechanical work; *For significant condition (overground vs. treadmill) effect;†For significant group (UCP vs. TD) effect;°For significant interaction (condition × group) effect (P ≤ 0.05).
Mentions: As shown in Table 4, Wext was significantly higher on the treadmill compared with overground walking (P ≤ 0.012; Figure 1A) and in UCP compared with TD (P ≤ 0.027). R was significantly lower during treadmill than during overground walking in both groups (P = 0.001). There was no significant walking condition effect for Wp (P = 0.36; Figure 1B), β (P = 0.12), and Wk/Wp (P = 0.76). However, Wp and β were significantly higher (P ≤ 0.003 and P ≤ 0.041, respectively) and Wk/Wp was significantly lower (P ≤ 0.012) in UCP than in TD during treadmill and overground walking. Wkv and Wkl showed a significant interaction effect and were significantly higher in treadmill than in overground walking (P ≤ 0.002; Figures 1C,D) and in UCP compared with TD within both walking conditions (P ≤ 0.01). There were no significant differences in Wk, Wkf and α between walking conditions and groups (P ≥ 0.17).

Bottom Line: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP).The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass.Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport Sciences of University of Lausanne, University of Lausanne Lausanne, Switzerland.

ABSTRACT

Purpose: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass.

Methods: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds.

Results: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05).

Conclusions: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

No MeSH data available.


Related in: MedlinePlus