Limits...
Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.

Foo F, King-Stephens D, Weber P, Laxer K, Parvizi J, Knight RT - Front Hum Neurosci (2016)

Bottom Line: Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres.We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites.In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

View Article: PubMed Central - PubMed

Affiliation: Biophysics Graduate Group, University of CaliforniaBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA.

ABSTRACT
The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

No MeSH data available.


Event-related spectral perturbations and Single Trial γhigh responses to consonant vs. dissonant chords for one example electrode per response type (marked A and B respectively) for each subject with right hemisphere electrode coverage. All electrodes with significant γhigh activity are included in individual subject brain images (left). The electrode marked ‘A’ in subject S7 met the statistical requirement to be categorized in the blue response type group, but was not included in the analysis because significant activation was less than 100 ms.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4829599&req=5

Figure 5: Event-related spectral perturbations and Single Trial γhigh responses to consonant vs. dissonant chords for one example electrode per response type (marked A and B respectively) for each subject with right hemisphere electrode coverage. All electrodes with significant γhigh activity are included in individual subject brain images (left). The electrode marked ‘A’ in subject S7 met the statistical requirement to be categorized in the blue response type group, but was not included in the analysis because significant activation was less than 100 ms.

Mentions: Within each hemisphere, ERSPs showing the intensity and duration of significant γhigh activity were averaged over cortical sites for each response type (LH: red – 6 sites, blue – 4 sites; RH: red – 10 sites, blue – 8 sites; Figure 3). In both hemispheres, averaged ERSPs for cortical sites denoted in red showed a significant increase in γhigh activity in response to dissonant chords compared to consonant chords between 75 and 200 ms post-stimulus onset (Wilcoxon rank-sum, p < 0.001; Figure 3A). Averaged ERSPs for cortical sites denoted in blue showed no significant difference between chord types (Wilcoxon rank-sum, p > 0.05). Single trial analyses also showed a similar effect, with responses consistently observed across individual trials. (See Figures 4 and 5 where ERSPs and single trial activity of one example electrode per response type are shown for each subject, and Table 2 where the duration of significant increase in γhigh activity are provided for each electrode denoted in red.) Note that 1 out of the 32 electrodes investigated showed γhigh responses that were significantly greater for consonant chords than dissonant chords (Figure 5, S7, marked in black).


Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.

Foo F, King-Stephens D, Weber P, Laxer K, Parvizi J, Knight RT - Front Hum Neurosci (2016)

Event-related spectral perturbations and Single Trial γhigh responses to consonant vs. dissonant chords for one example electrode per response type (marked A and B respectively) for each subject with right hemisphere electrode coverage. All electrodes with significant γhigh activity are included in individual subject brain images (left). The electrode marked ‘A’ in subject S7 met the statistical requirement to be categorized in the blue response type group, but was not included in the analysis because significant activation was less than 100 ms.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4829599&req=5

Figure 5: Event-related spectral perturbations and Single Trial γhigh responses to consonant vs. dissonant chords for one example electrode per response type (marked A and B respectively) for each subject with right hemisphere electrode coverage. All electrodes with significant γhigh activity are included in individual subject brain images (left). The electrode marked ‘A’ in subject S7 met the statistical requirement to be categorized in the blue response type group, but was not included in the analysis because significant activation was less than 100 ms.
Mentions: Within each hemisphere, ERSPs showing the intensity and duration of significant γhigh activity were averaged over cortical sites for each response type (LH: red – 6 sites, blue – 4 sites; RH: red – 10 sites, blue – 8 sites; Figure 3). In both hemispheres, averaged ERSPs for cortical sites denoted in red showed a significant increase in γhigh activity in response to dissonant chords compared to consonant chords between 75 and 200 ms post-stimulus onset (Wilcoxon rank-sum, p < 0.001; Figure 3A). Averaged ERSPs for cortical sites denoted in blue showed no significant difference between chord types (Wilcoxon rank-sum, p > 0.05). Single trial analyses also showed a similar effect, with responses consistently observed across individual trials. (See Figures 4 and 5 where ERSPs and single trial activity of one example electrode per response type are shown for each subject, and Table 2 where the duration of significant increase in γhigh activity are provided for each electrode denoted in red.) Note that 1 out of the 32 electrodes investigated showed γhigh responses that were significantly greater for consonant chords than dissonant chords (Figure 5, S7, marked in black).

Bottom Line: Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres.We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites.In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

View Article: PubMed Central - PubMed

Affiliation: Biophysics Graduate Group, University of CaliforniaBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA.

ABSTRACT
The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

No MeSH data available.