Limits...
Oxytocin Effect on Collective Decision Making: A Randomized Placebo Controlled Study.

Hertz U, Kelly M, Rutledge RB, Winston J, Wright N, Dolan RJ, Bahrami B - PLoS ONE (2016)

Bottom Line: Collective decision making often benefits both the individuals and the group in a variety of contexts.Compared to placebo, collective benefit did not decrease under oxytocin.Using an exploratory time dependent analysis, we observed increase in collective benefit over time under oxytocin.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, United Kingdom.

ABSTRACT
Collective decision making often benefits both the individuals and the group in a variety of contexts. However, for the group to be successful, individuals should be able to strike a balance between their level of competence and their influence on the collective decisions. The hormone oxytocin has been shown to promote trust, conformism and attention to social cues. We wondered if this hormone may increase participants' (unwarranted) reliance on their partners' opinion, resulting in a reduction in collective benefit by disturbing the balance between influence and competence. To test this hypothesis we employed a randomized double-blind placebo-controlled design in which male dyads self-administered intranasal oxytocin or placebo and then performed a visual search task together. Compared to placebo, collective benefit did not decrease under oxytocin. Using an exploratory time dependent analysis, we observed increase in collective benefit over time under oxytocin. Moreover, trial-by-trial analysis showed that under oxytocin the more competent member of each dyad was less likely to change his mind during disagreements, while the less competent member showed a greater willingness to change his mind and conform to the opinion of his more reliable partner. This role-dependent effect may be mediated by enhanced monitoring of own and other's performance level under oxytocin. Such enhanced social learning could improve the balance between influence and competence and lead to efficient and beneficial collaboration.

Show MeSH
Experimental and task design.(A) Experimental timeline. The experiment started with intranasal self-administration of oxytocin or placebo (double blind). Participants waited quietly for 20 minutes and the performed a 5-minute practice block. The experiment proper started 25 minutes after administration. The experiment duration varied but lasted at least 35 minutes in all dyads, by which time the average of 224 were carried. (B) Pairs of male participants (dyads) performed together a 2-alternative forced choice oddball detection task. Visual stimuli consisted of six vertically oriented Gabor patches displayed equidistantly around an imaginary circle. One randomly selected interval contained the target of higher contrast. Participants indicated their individual decisions privately. If they disagreed, a joint decision was negotiated and announced. Feedback about accuracy was provided. (C) Participants sat in the same testing room, each viewing his own display. Display screens were placed on separate tables at a right angle to each other. (D) We measured the proportion of trials on which the observer reported that the target was presented in the second interval in different target contrast levels, and fitted a psychometric curve to these data. For each dyad three curves were fitted: two for the individual decisions made by each dyad member, and one for the dyadic decisions. Here we depict the psychometric curves fitted to one exemplar dyad. We present the better member data (dark square) and fitted curve (dark line), worse member data and fitted curve (light line and light circles), and dyadic data and fitted curve (dark dots and dashed line). In this case dyadic slope is steeper than the best member’s slope, indicating positive collective benefit.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4829266&req=5

pone.0153352.g002: Experimental and task design.(A) Experimental timeline. The experiment started with intranasal self-administration of oxytocin or placebo (double blind). Participants waited quietly for 20 minutes and the performed a 5-minute practice block. The experiment proper started 25 minutes after administration. The experiment duration varied but lasted at least 35 minutes in all dyads, by which time the average of 224 were carried. (B) Pairs of male participants (dyads) performed together a 2-alternative forced choice oddball detection task. Visual stimuli consisted of six vertically oriented Gabor patches displayed equidistantly around an imaginary circle. One randomly selected interval contained the target of higher contrast. Participants indicated their individual decisions privately. If they disagreed, a joint decision was negotiated and announced. Feedback about accuracy was provided. (C) Participants sat in the same testing room, each viewing his own display. Display screens were placed on separate tables at a right angle to each other. (D) We measured the proportion of trials on which the observer reported that the target was presented in the second interval in different target contrast levels, and fitted a psychometric curve to these data. For each dyad three curves were fitted: two for the individual decisions made by each dyad member, and one for the dyadic decisions. Here we depict the psychometric curves fitted to one exemplar dyad. We present the better member data (dark square) and fitted curve (dark line), worse member data and fitted curve (light line and light circles), and dyadic data and fitted curve (dark dots and dashed line). In this case dyadic slope is steeper than the best member’s slope, indicating positive collective benefit.

Mentions: Both dyad members viewed identical stimuli, presented on separate display monitors in the same room (Fig 2C). One dyad member responded using the keyboard, the other used the mouse. Both participants used their right hand.


Oxytocin Effect on Collective Decision Making: A Randomized Placebo Controlled Study.

Hertz U, Kelly M, Rutledge RB, Winston J, Wright N, Dolan RJ, Bahrami B - PLoS ONE (2016)

Experimental and task design.(A) Experimental timeline. The experiment started with intranasal self-administration of oxytocin or placebo (double blind). Participants waited quietly for 20 minutes and the performed a 5-minute practice block. The experiment proper started 25 minutes after administration. The experiment duration varied but lasted at least 35 minutes in all dyads, by which time the average of 224 were carried. (B) Pairs of male participants (dyads) performed together a 2-alternative forced choice oddball detection task. Visual stimuli consisted of six vertically oriented Gabor patches displayed equidistantly around an imaginary circle. One randomly selected interval contained the target of higher contrast. Participants indicated their individual decisions privately. If they disagreed, a joint decision was negotiated and announced. Feedback about accuracy was provided. (C) Participants sat in the same testing room, each viewing his own display. Display screens were placed on separate tables at a right angle to each other. (D) We measured the proportion of trials on which the observer reported that the target was presented in the second interval in different target contrast levels, and fitted a psychometric curve to these data. For each dyad three curves were fitted: two for the individual decisions made by each dyad member, and one for the dyadic decisions. Here we depict the psychometric curves fitted to one exemplar dyad. We present the better member data (dark square) and fitted curve (dark line), worse member data and fitted curve (light line and light circles), and dyadic data and fitted curve (dark dots and dashed line). In this case dyadic slope is steeper than the best member’s slope, indicating positive collective benefit.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4829266&req=5

pone.0153352.g002: Experimental and task design.(A) Experimental timeline. The experiment started with intranasal self-administration of oxytocin or placebo (double blind). Participants waited quietly for 20 minutes and the performed a 5-minute practice block. The experiment proper started 25 minutes after administration. The experiment duration varied but lasted at least 35 minutes in all dyads, by which time the average of 224 were carried. (B) Pairs of male participants (dyads) performed together a 2-alternative forced choice oddball detection task. Visual stimuli consisted of six vertically oriented Gabor patches displayed equidistantly around an imaginary circle. One randomly selected interval contained the target of higher contrast. Participants indicated their individual decisions privately. If they disagreed, a joint decision was negotiated and announced. Feedback about accuracy was provided. (C) Participants sat in the same testing room, each viewing his own display. Display screens were placed on separate tables at a right angle to each other. (D) We measured the proportion of trials on which the observer reported that the target was presented in the second interval in different target contrast levels, and fitted a psychometric curve to these data. For each dyad three curves were fitted: two for the individual decisions made by each dyad member, and one for the dyadic decisions. Here we depict the psychometric curves fitted to one exemplar dyad. We present the better member data (dark square) and fitted curve (dark line), worse member data and fitted curve (light line and light circles), and dyadic data and fitted curve (dark dots and dashed line). In this case dyadic slope is steeper than the best member’s slope, indicating positive collective benefit.
Mentions: Both dyad members viewed identical stimuli, presented on separate display monitors in the same room (Fig 2C). One dyad member responded using the keyboard, the other used the mouse. Both participants used their right hand.

Bottom Line: Collective decision making often benefits both the individuals and the group in a variety of contexts.Compared to placebo, collective benefit did not decrease under oxytocin.Using an exploratory time dependent analysis, we observed increase in collective benefit over time under oxytocin.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, United Kingdom.

ABSTRACT
Collective decision making often benefits both the individuals and the group in a variety of contexts. However, for the group to be successful, individuals should be able to strike a balance between their level of competence and their influence on the collective decisions. The hormone oxytocin has been shown to promote trust, conformism and attention to social cues. We wondered if this hormone may increase participants' (unwarranted) reliance on their partners' opinion, resulting in a reduction in collective benefit by disturbing the balance between influence and competence. To test this hypothesis we employed a randomized double-blind placebo-controlled design in which male dyads self-administered intranasal oxytocin or placebo and then performed a visual search task together. Compared to placebo, collective benefit did not decrease under oxytocin. Using an exploratory time dependent analysis, we observed increase in collective benefit over time under oxytocin. Moreover, trial-by-trial analysis showed that under oxytocin the more competent member of each dyad was less likely to change his mind during disagreements, while the less competent member showed a greater willingness to change his mind and conform to the opinion of his more reliable partner. This role-dependent effect may be mediated by enhanced monitoring of own and other's performance level under oxytocin. Such enhanced social learning could improve the balance between influence and competence and lead to efficient and beneficial collaboration.

Show MeSH