Limits...
Rotational manipulation of single cells and organisms using acoustic waves

View Article: PubMed Central - PubMed

ABSTRACT

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

No MeSH data available.


High-speed imaging showing the rotational motion of microparticles and cells caused by an oscillating microbubble.Clockwise and in-plane rotation motion of (a) a doublet and (b) a triplet. (c) Counter clockwise in-plane rotation of a HeLa cell. (d) Out-of-plane rotation of a HeLa cell. Parallel (e) in-plane and (f) out-of-plane rotation of a HeLa cells. (g) Plot of rotational speed ω against driving voltage VPP of a HeLa cell driven by an oscillating microbubble, with a constant excitation frequency. The rotational rate of the cell varies as the second power of the driving voltage, ω∝V2.1. (h) Plot of the rotational angle θ versus a function of time t for a HeLa cell. Error bars represent standard deviation (n⩾5). Scale bars, 10 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814581&req=5

f4: High-speed imaging showing the rotational motion of microparticles and cells caused by an oscillating microbubble.Clockwise and in-plane rotation motion of (a) a doublet and (b) a triplet. (c) Counter clockwise in-plane rotation of a HeLa cell. (d) Out-of-plane rotation of a HeLa cell. Parallel (e) in-plane and (f) out-of-plane rotation of a HeLa cells. (g) Plot of rotational speed ω against driving voltage VPP of a HeLa cell driven by an oscillating microbubble, with a constant excitation frequency. The rotational rate of the cell varies as the second power of the driving voltage, ω∝V2.1. (h) Plot of the rotational angle θ versus a function of time t for a HeLa cell. Error bars represent standard deviation (n⩾5). Scale bars, 10 μm.

Mentions: Rotational manipulation of doublets, triplets and HeLa cells were demonstrated as image sequences in Fig. 4a–c, respectively (see also Supplementary Movies 5 and 6). The torque created by an oscillating microbubble is determined by the intensity of the ambient acoustic field, which is controlled by adjusting the voltage applied to the piezoelectric transducer. Rotational rates can be as large as ∼3,000 rotations per minute in cell medium. The rotation axis of cells and particles follows the streamlines of the in-plane and out-of-plane vortices of the oscillating microbubbles and undergoes z axis (Fig. 4c,e) and x axis (Fig. 4d,f) rotation, respectively. In addition, the rotation axis is independent of the shape of the rotated object as demonstrated by z axis rotation of HeLa cell, doublet and triplet in Fig. 4a–c, respectively, thus making the system versatile.


Rotational manipulation of single cells and organisms using acoustic waves
High-speed imaging showing the rotational motion of microparticles and cells caused by an oscillating microbubble.Clockwise and in-plane rotation motion of (a) a doublet and (b) a triplet. (c) Counter clockwise in-plane rotation of a HeLa cell. (d) Out-of-plane rotation of a HeLa cell. Parallel (e) in-plane and (f) out-of-plane rotation of a HeLa cells. (g) Plot of rotational speed ω against driving voltage VPP of a HeLa cell driven by an oscillating microbubble, with a constant excitation frequency. The rotational rate of the cell varies as the second power of the driving voltage, ω∝V2.1. (h) Plot of the rotational angle θ versus a function of time t for a HeLa cell. Error bars represent standard deviation (n⩾5). Scale bars, 10 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814581&req=5

f4: High-speed imaging showing the rotational motion of microparticles and cells caused by an oscillating microbubble.Clockwise and in-plane rotation motion of (a) a doublet and (b) a triplet. (c) Counter clockwise in-plane rotation of a HeLa cell. (d) Out-of-plane rotation of a HeLa cell. Parallel (e) in-plane and (f) out-of-plane rotation of a HeLa cells. (g) Plot of rotational speed ω against driving voltage VPP of a HeLa cell driven by an oscillating microbubble, with a constant excitation frequency. The rotational rate of the cell varies as the second power of the driving voltage, ω∝V2.1. (h) Plot of the rotational angle θ versus a function of time t for a HeLa cell. Error bars represent standard deviation (n⩾5). Scale bars, 10 μm.
Mentions: Rotational manipulation of doublets, triplets and HeLa cells were demonstrated as image sequences in Fig. 4a–c, respectively (see also Supplementary Movies 5 and 6). The torque created by an oscillating microbubble is determined by the intensity of the ambient acoustic field, which is controlled by adjusting the voltage applied to the piezoelectric transducer. Rotational rates can be as large as ∼3,000 rotations per minute in cell medium. The rotation axis of cells and particles follows the streamlines of the in-plane and out-of-plane vortices of the oscillating microbubbles and undergoes z axis (Fig. 4c,e) and x axis (Fig. 4d,f) rotation, respectively. In addition, the rotation axis is independent of the shape of the rotated object as demonstrated by z axis rotation of HeLa cell, doublet and triplet in Fig. 4a–c, respectively, thus making the system versatile.

View Article: PubMed Central - PubMed

ABSTRACT

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

No MeSH data available.