Limits...
Rotational manipulation of single cells and organisms using acoustic waves

View Article: PubMed Central - PubMed

ABSTRACT

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

No MeSH data available.


Design and operation of the acoustofluidic rotational manipulation (ARM) device.(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar, 100 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814581&req=5

f1: Design and operation of the acoustofluidic rotational manipulation (ARM) device.(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar, 100 μm.

Mentions: The device setup (Fig. 1a) includes a PDMS-based single layer microfluidic channel and a piezoelectric transducer. The channel contains linear arrays of rectangular microcavities (Fig. 1b) that trap air microbubbles when the liquid is injected. A piezoelectric transducer mounted on a glass slide adjacent to the channel generates acoustic waves. When the trapped microbubble is exposed to an acoustic field with a wavelength much larger than microbubble diameters, oscillations are created, which, in turn, generate acoustic microstreaming47 (Fig. 2a).


Rotational manipulation of single cells and organisms using acoustic waves
Design and operation of the acoustofluidic rotational manipulation (ARM) device.(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar, 100 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814581&req=5

f1: Design and operation of the acoustofluidic rotational manipulation (ARM) device.(a) A schematic of the experimental setup. The piezoelectric transducer that generates acoustic waves is placed adjacent to the microfluidic channel. The acoustic waves actuate air microbubbles trapped within sidewall microcavities. (b) An optical image showing a mid-L4 stage C. elegans trapped by multiple oscillating microbubbles. Scale bar, 100 μm.
Mentions: The device setup (Fig. 1a) includes a PDMS-based single layer microfluidic channel and a piezoelectric transducer. The channel contains linear arrays of rectangular microcavities (Fig. 1b) that trap air microbubbles when the liquid is injected. A piezoelectric transducer mounted on a glass slide adjacent to the channel generates acoustic waves. When the trapped microbubble is exposed to an acoustic field with a wavelength much larger than microbubble diameters, oscillations are created, which, in turn, generate acoustic microstreaming47 (Fig. 2a).

View Article: PubMed Central - PubMed

ABSTRACT

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

No MeSH data available.