Limits...
Golgi-Cox Staining Step by Step.

Zaqout S, Kaindl AM - Front Neuroanat (2016)

Bottom Line: Golgi staining remains a key method to study neuronal morphology in vivo.Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating.Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin BerlinBerlin, Germany; Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin BerlinBerlin, Germany.

ABSTRACT
Golgi staining remains a key method to study neuronal morphology in vivo. Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating. Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field.

No MeSH data available.


Golgi-Cox staining for adult mouse brain. Neurons in all brain regions are evenly and reliably stained with the Golgi-Cox protocol described here (A). Magnified images of cerebral cortex (B,C), hippocampus (D) and cerebellar cortex (E). Dendritic spines can also be visualized in much higher magnification (F). (Golgi staining, DIC images, scale bars 500 μm in (A,B), 50 μm in (E) and 5 μm in (F)).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814522&req=5

Figure 5: Golgi-Cox staining for adult mouse brain. Neurons in all brain regions are evenly and reliably stained with the Golgi-Cox protocol described here (A). Magnified images of cerebral cortex (B,C), hippocampus (D) and cerebellar cortex (E). Dendritic spines can also be visualized in much higher magnification (F). (Golgi staining, DIC images, scale bars 500 μm in (A,B), 50 μm in (E) and 5 μm in (F)).

Mentions: We describe in detail the Golgi-Cox staining protocol from preparation of the solutions, via transferring brain tissue, tissue sectioning, and development to mounting of the stained sections. Using this protocol, we have found that the dendritic tree and the dendritic spines of neurons are evenly and constantly stained in all brain regions (Figure 5). Additionally, while most Golgi-based studies report using coronal sections, we have found that neuronal dendritic arborization is best preserved and imaged when brains are cut in the sagittal plane, as also note by Valverde (1998). We also found that the tissue-protectant (cryoprotectant) solution (de Olmos et al., 1978; Watson et al., 1986) is very helpful to preserve tissue quality, reduce the staining background, and improve the attachment of sections to gelatin-coated slides. Minor additional steps can be added to our protocol to amend it for younger mice (Koyama and Tohyama, 2012) or to increase the staining for glia cells more than neurons (Ranjan and Mallick, 2012; Gull et al., 2015). Using our protocol, we found that initial brief fixation of brain samples with 4% PFA for 1 h followed by dd-H2O washing improves the staining for younger mice (Figure 6). Once all chemical and materials available in the lab, Golgi staining can be performed for large number of brain samples that lowers the overall cost needed to perform this staining.


Golgi-Cox Staining Step by Step.

Zaqout S, Kaindl AM - Front Neuroanat (2016)

Golgi-Cox staining for adult mouse brain. Neurons in all brain regions are evenly and reliably stained with the Golgi-Cox protocol described here (A). Magnified images of cerebral cortex (B,C), hippocampus (D) and cerebellar cortex (E). Dendritic spines can also be visualized in much higher magnification (F). (Golgi staining, DIC images, scale bars 500 μm in (A,B), 50 μm in (E) and 5 μm in (F)).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814522&req=5

Figure 5: Golgi-Cox staining for adult mouse brain. Neurons in all brain regions are evenly and reliably stained with the Golgi-Cox protocol described here (A). Magnified images of cerebral cortex (B,C), hippocampus (D) and cerebellar cortex (E). Dendritic spines can also be visualized in much higher magnification (F). (Golgi staining, DIC images, scale bars 500 μm in (A,B), 50 μm in (E) and 5 μm in (F)).
Mentions: We describe in detail the Golgi-Cox staining protocol from preparation of the solutions, via transferring brain tissue, tissue sectioning, and development to mounting of the stained sections. Using this protocol, we have found that the dendritic tree and the dendritic spines of neurons are evenly and constantly stained in all brain regions (Figure 5). Additionally, while most Golgi-based studies report using coronal sections, we have found that neuronal dendritic arborization is best preserved and imaged when brains are cut in the sagittal plane, as also note by Valverde (1998). We also found that the tissue-protectant (cryoprotectant) solution (de Olmos et al., 1978; Watson et al., 1986) is very helpful to preserve tissue quality, reduce the staining background, and improve the attachment of sections to gelatin-coated slides. Minor additional steps can be added to our protocol to amend it for younger mice (Koyama and Tohyama, 2012) or to increase the staining for glia cells more than neurons (Ranjan and Mallick, 2012; Gull et al., 2015). Using our protocol, we found that initial brief fixation of brain samples with 4% PFA for 1 h followed by dd-H2O washing improves the staining for younger mice (Figure 6). Once all chemical and materials available in the lab, Golgi staining can be performed for large number of brain samples that lowers the overall cost needed to perform this staining.

Bottom Line: Golgi staining remains a key method to study neuronal morphology in vivo.Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating.Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin BerlinBerlin, Germany; Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité - Universitätsmedizin BerlinBerlin, Germany.

ABSTRACT
Golgi staining remains a key method to study neuronal morphology in vivo. Since most protocols delineating modifications of the original staining method lack details on critical steps, establishing this method in a laboratory can be time-consuming and frustrating. Here, we describe the Golgi-Cox staining in such detail that should turn the staining into an easily feasible method for all scientists working in the neuroscience field.

No MeSH data available.