Limits...
Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress.

Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q - Front Plant Sci (2016)

Bottom Line: We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively.The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively.Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

View Article: PubMed Central - PubMed

Affiliation: Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China.

ABSTRACT
Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

No MeSH data available.


Related in: MedlinePlus

Physiological analysis and phenotypic observation of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 under salt stress. One-month-old Zhongmu-1 and Jemalong A17 seedlings treated with 300 mM NaCl for 0, 2, 8, 24, and 48 h were analyzed for relative water content (A), electrolyte leakage (B), and proline content (C). (D,E) phenotypic observation of 1-month-old Jemalong A17 seedlings treated with 300 mM NaCl for 0 and 8 h. (F,G) phenotypic observation 1-month-old Zhongmu-1 seedlings treated with 300 mM NaCl for 0 and 8 h. * Indicates significant difference at p < 0.05 (Student's t-test).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814493&req=5

Figure 1: Physiological analysis and phenotypic observation of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 under salt stress. One-month-old Zhongmu-1 and Jemalong A17 seedlings treated with 300 mM NaCl for 0, 2, 8, 24, and 48 h were analyzed for relative water content (A), electrolyte leakage (B), and proline content (C). (D,E) phenotypic observation of 1-month-old Jemalong A17 seedlings treated with 300 mM NaCl for 0 and 8 h. (F,G) phenotypic observation 1-month-old Zhongmu-1 seedlings treated with 300 mM NaCl for 0 and 8 h. * Indicates significant difference at p < 0.05 (Student's t-test).

Mentions: The responses of Zhongmu-1 and Jemalong A17 to salt stress were compared in terms of leaf RWC, electrolyte leakage, and proline content. We observed that the leaf RWC of Zhongmu-1 and Jemalong A17 decreased by about 10% and over 20%, respectively, after exposure to salt stress for 48 h (Figure 1A). Relative electrolyte conductivity and proline content increased dramatically in salt stressed plants (Figure 1B). Following salt treatment, the relative electrolyte conductivity of Zhongmu-1 was lower than that of Jemalong A17. Conversely, proline accumulation in Zhongmu-1 was higher than that of Jemalong A17 (Figure 1C). Acording to the phenotypic observation the wilting degree of Jemalong A17 seedlings was much more obvious than that of Zhongmu-1 seedlings after treating with 300 mM NaCl for 8 h (Figures 1D–G). The physiological and phenotypic observations confirmed that M. sativa cv. Zhongmu-1 is more salt-tolerant than M. truncatula cv. Jemalong A17.


Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress.

Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q - Front Plant Sci (2016)

Physiological analysis and phenotypic observation of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 under salt stress. One-month-old Zhongmu-1 and Jemalong A17 seedlings treated with 300 mM NaCl for 0, 2, 8, 24, and 48 h were analyzed for relative water content (A), electrolyte leakage (B), and proline content (C). (D,E) phenotypic observation of 1-month-old Jemalong A17 seedlings treated with 300 mM NaCl for 0 and 8 h. (F,G) phenotypic observation 1-month-old Zhongmu-1 seedlings treated with 300 mM NaCl for 0 and 8 h. * Indicates significant difference at p < 0.05 (Student's t-test).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814493&req=5

Figure 1: Physiological analysis and phenotypic observation of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 under salt stress. One-month-old Zhongmu-1 and Jemalong A17 seedlings treated with 300 mM NaCl for 0, 2, 8, 24, and 48 h were analyzed for relative water content (A), electrolyte leakage (B), and proline content (C). (D,E) phenotypic observation of 1-month-old Jemalong A17 seedlings treated with 300 mM NaCl for 0 and 8 h. (F,G) phenotypic observation 1-month-old Zhongmu-1 seedlings treated with 300 mM NaCl for 0 and 8 h. * Indicates significant difference at p < 0.05 (Student's t-test).
Mentions: The responses of Zhongmu-1 and Jemalong A17 to salt stress were compared in terms of leaf RWC, electrolyte leakage, and proline content. We observed that the leaf RWC of Zhongmu-1 and Jemalong A17 decreased by about 10% and over 20%, respectively, after exposure to salt stress for 48 h (Figure 1A). Relative electrolyte conductivity and proline content increased dramatically in salt stressed plants (Figure 1B). Following salt treatment, the relative electrolyte conductivity of Zhongmu-1 was lower than that of Jemalong A17. Conversely, proline accumulation in Zhongmu-1 was higher than that of Jemalong A17 (Figure 1C). Acording to the phenotypic observation the wilting degree of Jemalong A17 seedlings was much more obvious than that of Zhongmu-1 seedlings after treating with 300 mM NaCl for 8 h (Figures 1D–G). The physiological and phenotypic observations confirmed that M. sativa cv. Zhongmu-1 is more salt-tolerant than M. truncatula cv. Jemalong A17.

Bottom Line: We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively.The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively.Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

View Article: PubMed Central - PubMed

Affiliation: Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China.

ABSTRACT
Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

No MeSH data available.


Related in: MedlinePlus