Limits...
Microbial Communities in a High Arctic Polar Desert Landscape.

McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CR, Graham DW - Front Microbiol (2016)

Bottom Line: In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape.Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock.In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK.

ABSTRACT
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

No MeSH data available.


Related in: MedlinePlus

Relative abundances of the dominant bacterial phyla in the polar desert soils (n = 7), a glacial moraine (n = 1) and the tundra (n = 1) soil. These have been compared to the dominant phyla from 29 soils across the Arctic by Chu et al. (2010). All abundances are based upon the proportional frequency of sequences that could be identified at the phylum level.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814466&req=5

Figure 2: Relative abundances of the dominant bacterial phyla in the polar desert soils (n = 7), a glacial moraine (n = 1) and the tundra (n = 1) soil. These have been compared to the dominant phyla from 29 soils across the Arctic by Chu et al. (2010). All abundances are based upon the proportional frequency of sequences that could be identified at the phylum level.

Mentions: The dominant bacterial phyla found in the Kongsfjorden polar desert soils are consistent with the most abundant bacterial phyla observed in a global meta-analysis of soils (Janssen, 2006). This conclusion supports the idea that gross bacterial communities in the Arctic are not too different from temperate biomes at the phylum level (Chu et al., 2010). Nevertheless, this study, which was conducted over a 100 km2 landscape, displayed notable differences. Specifically, the Planctomycetes, Cyanobacteria, Gemmatimonadetes, Firmicutes, Chloroflexi, and Verrucimicrobia were all at higher relative abundances than the levels reported by Chu et al. (2010), (see Figure 2) being closer to the global averages summarized by Janssen (2006).


Microbial Communities in a High Arctic Polar Desert Landscape.

McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CR, Graham DW - Front Microbiol (2016)

Relative abundances of the dominant bacterial phyla in the polar desert soils (n = 7), a glacial moraine (n = 1) and the tundra (n = 1) soil. These have been compared to the dominant phyla from 29 soils across the Arctic by Chu et al. (2010). All abundances are based upon the proportional frequency of sequences that could be identified at the phylum level.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814466&req=5

Figure 2: Relative abundances of the dominant bacterial phyla in the polar desert soils (n = 7), a glacial moraine (n = 1) and the tundra (n = 1) soil. These have been compared to the dominant phyla from 29 soils across the Arctic by Chu et al. (2010). All abundances are based upon the proportional frequency of sequences that could be identified at the phylum level.
Mentions: The dominant bacterial phyla found in the Kongsfjorden polar desert soils are consistent with the most abundant bacterial phyla observed in a global meta-analysis of soils (Janssen, 2006). This conclusion supports the idea that gross bacterial communities in the Arctic are not too different from temperate biomes at the phylum level (Chu et al., 2010). Nevertheless, this study, which was conducted over a 100 km2 landscape, displayed notable differences. Specifically, the Planctomycetes, Cyanobacteria, Gemmatimonadetes, Firmicutes, Chloroflexi, and Verrucimicrobia were all at higher relative abundances than the levels reported by Chu et al. (2010), (see Figure 2) being closer to the global averages summarized by Janssen (2006).

Bottom Line: In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape.Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock.In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK.

ABSTRACT
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

No MeSH data available.


Related in: MedlinePlus