Limits...
Microbial Communities in a High Arctic Polar Desert Landscape.

McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CR, Graham DW - Front Microbiol (2016)

Bottom Line: In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape.Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock.In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK.

ABSTRACT
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

No MeSH data available.


Related in: MedlinePlus

Relationships between measures of taxonomic diversity (Shannon, H′, closed circles) and richness (Chao, Schao, open squares) versus polar desert soil (A) pH, (B) calcium, (C) phosphorus. Gray circles and squares represent the tundra (SN) and glacial moraine (BBM) soil samples, which were not included in the statistical analysis. Diversity metrics were based upon 10 random iterations of the pyrosequencing dataset data rarefied to 3,946 reads per library. The p-values indicate the significance of linear (r) correlation coefficients for pairs of variables (SPSS Statistics version 21; IBM).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814466&req=5

Figure 1: Relationships between measures of taxonomic diversity (Shannon, H′, closed circles) and richness (Chao, Schao, open squares) versus polar desert soil (A) pH, (B) calcium, (C) phosphorus. Gray circles and squares represent the tundra (SN) and glacial moraine (BBM) soil samples, which were not included in the statistical analysis. Diversity metrics were based upon 10 random iterations of the pyrosequencing dataset data rarefied to 3,946 reads per library. The p-values indicate the significance of linear (r) correlation coefficients for pairs of variables (SPSS Statistics version 21; IBM).

Mentions: The pH and calcium levels in the polar desert soils showed significant linear correlations with both taxonomic diversity (H′) and richness (Schao; p ≤ 0.05, Figure 1). Bayesian parametric total diversity estimates also displayed significant linear relationships with calcium (r = 0.805, p = 0.029). In addition, soil P displayed significant linear relationships with H′ (r = 0.744, p = 0.021) and Schao (r = 0.744, p = 0.022). No other edaphic parameters significantly correlated with the diversity metrics for these soils (p > 0.05).


Microbial Communities in a High Arctic Polar Desert Landscape.

McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CR, Graham DW - Front Microbiol (2016)

Relationships between measures of taxonomic diversity (Shannon, H′, closed circles) and richness (Chao, Schao, open squares) versus polar desert soil (A) pH, (B) calcium, (C) phosphorus. Gray circles and squares represent the tundra (SN) and glacial moraine (BBM) soil samples, which were not included in the statistical analysis. Diversity metrics were based upon 10 random iterations of the pyrosequencing dataset data rarefied to 3,946 reads per library. The p-values indicate the significance of linear (r) correlation coefficients for pairs of variables (SPSS Statistics version 21; IBM).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814466&req=5

Figure 1: Relationships between measures of taxonomic diversity (Shannon, H′, closed circles) and richness (Chao, Schao, open squares) versus polar desert soil (A) pH, (B) calcium, (C) phosphorus. Gray circles and squares represent the tundra (SN) and glacial moraine (BBM) soil samples, which were not included in the statistical analysis. Diversity metrics were based upon 10 random iterations of the pyrosequencing dataset data rarefied to 3,946 reads per library. The p-values indicate the significance of linear (r) correlation coefficients for pairs of variables (SPSS Statistics version 21; IBM).
Mentions: The pH and calcium levels in the polar desert soils showed significant linear correlations with both taxonomic diversity (H′) and richness (Schao; p ≤ 0.05, Figure 1). Bayesian parametric total diversity estimates also displayed significant linear relationships with calcium (r = 0.805, p = 0.029). In addition, soil P displayed significant linear relationships with H′ (r = 0.744, p = 0.021) and Schao (r = 0.744, p = 0.022). No other edaphic parameters significantly correlated with the diversity metrics for these soils (p > 0.05).

Bottom Line: In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape.Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock.In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK.

ABSTRACT
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.

No MeSH data available.


Related in: MedlinePlus