Limits...
Insight to Nanoparticle Size Analysis-Novel and Convenient Image Analysis Method Versus Conventional Techniques.

Vippola M, Valkonen M, Sarlin E, Honkanen M, Huttunen H - Nanoscale Res Lett (2016)

Bottom Line: However, particle shapes that are very different from spherical proved to be problematic also for the novel program.When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles.However, the SAXS method does not provide any data about the shape or appearance of the sample.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere, Finland. minnamari.vippola@tut.fi.

ABSTRACT
The aim of this paper is to introduce a new image analysis program "Nanoannotator" particularly developed for analyzing individual nanoparticles in transmission electron microscopy images. This paper describes the usefulness and efficiency of the program when analyzing nanoparticles, and at the same time, we compare it to more conventional nanoparticle analysis techniques. The techniques which we are concentrating here are transmission electron microscopy (TEM) linked with different image analysis methods and X-ray diffraction techniques. The developed program appeared as a good supplement to the field of particle analysis techniques, since the traditional image analysis programs suffer from the inability to separate the individual particles from agglomerates in the TEM images. The program is more efficient, and it offers more detailed morphological information of the particles than the manual technique. However, particle shapes that are very different from spherical proved to be problematic also for the novel program. When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles. However, the SAXS method does not provide any data about the shape or appearance of the sample.

No MeSH data available.


Related in: MedlinePlus

The particle analysis of iron oxide whiskers by the developed program: (a) automatically identified particles, (b) manually identified and shaped particle contours, (c) example of an area impossible to be analyzed even by the naked eye
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814392&req=5

Fig5: The particle analysis of iron oxide whiskers by the developed program: (a) automatically identified particles, (b) manually identified and shaped particle contours, (c) example of an area impossible to be analyzed even by the naked eye

Mentions: The automatic analysis of the iron oxide whiskers by the Nanoannotator program did not succeed as well as for the silver nanoparticles. The presumption of the program that the particle shape is close to circular made the automatic identification of the whiskers impossible, as shown in Fig. 5a. Thus, the identification of the particles and the particle shape adjustment had to be made manually (Fig. 5b), which decreased the efficiency of the method. In addition, the agglomerated whiskers were partly impossible to distinguish even by the naked eye (Fig. 5c), and as a consequence, a lot of the particles in the TEM images could not be used in the image analysis. The characteristic used to describe the size of the whiskers was the major and the minor axes, since those were regarded as the most comparative values to the size reported by the manufacturer (length and width of the whisker). To define the most frequent value, a broader scale was used in grouping the results when compared to the silver nanoparticles due to the larger size of the whiskers.Fig. 5


Insight to Nanoparticle Size Analysis-Novel and Convenient Image Analysis Method Versus Conventional Techniques.

Vippola M, Valkonen M, Sarlin E, Honkanen M, Huttunen H - Nanoscale Res Lett (2016)

The particle analysis of iron oxide whiskers by the developed program: (a) automatically identified particles, (b) manually identified and shaped particle contours, (c) example of an area impossible to be analyzed even by the naked eye
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814392&req=5

Fig5: The particle analysis of iron oxide whiskers by the developed program: (a) automatically identified particles, (b) manually identified and shaped particle contours, (c) example of an area impossible to be analyzed even by the naked eye
Mentions: The automatic analysis of the iron oxide whiskers by the Nanoannotator program did not succeed as well as for the silver nanoparticles. The presumption of the program that the particle shape is close to circular made the automatic identification of the whiskers impossible, as shown in Fig. 5a. Thus, the identification of the particles and the particle shape adjustment had to be made manually (Fig. 5b), which decreased the efficiency of the method. In addition, the agglomerated whiskers were partly impossible to distinguish even by the naked eye (Fig. 5c), and as a consequence, a lot of the particles in the TEM images could not be used in the image analysis. The characteristic used to describe the size of the whiskers was the major and the minor axes, since those were regarded as the most comparative values to the size reported by the manufacturer (length and width of the whisker). To define the most frequent value, a broader scale was used in grouping the results when compared to the silver nanoparticles due to the larger size of the whiskers.Fig. 5

Bottom Line: However, particle shapes that are very different from spherical proved to be problematic also for the novel program.When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles.However, the SAXS method does not provide any data about the shape or appearance of the sample.

View Article: PubMed Central - PubMed

Affiliation: Department of Materials Science, Tampere University of Technology, P.O. Box 589, 33101, Tampere, Finland. minnamari.vippola@tut.fi.

ABSTRACT
The aim of this paper is to introduce a new image analysis program "Nanoannotator" particularly developed for analyzing individual nanoparticles in transmission electron microscopy images. This paper describes the usefulness and efficiency of the program when analyzing nanoparticles, and at the same time, we compare it to more conventional nanoparticle analysis techniques. The techniques which we are concentrating here are transmission electron microscopy (TEM) linked with different image analysis methods and X-ray diffraction techniques. The developed program appeared as a good supplement to the field of particle analysis techniques, since the traditional image analysis programs suffer from the inability to separate the individual particles from agglomerates in the TEM images. The program is more efficient, and it offers more detailed morphological information of the particles than the manual technique. However, particle shapes that are very different from spherical proved to be problematic also for the novel program. When compared to X-ray techniques, the main advantage of the small-angle X-ray scattering (SAXS) method is the average data it provides from a very large amount of particles. However, the SAXS method does not provide any data about the shape or appearance of the sample.

No MeSH data available.


Related in: MedlinePlus