Limits...
Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

Binder ZA, Wilson KM, Salmasi V, Orr BA, Eberhart CG, Siu IM, Lim M, Weingart JD, Quinones-Hinojosa A, Bettegowda C, Kassam AB, Olivi A, Brem H, Riggins GJ, Gallia GL - PLoS ONE (2016)

Bottom Line: When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity.Multipotency was confirmed using in vitro differentiation.These oncosphere cell lines will expand the resources available for preclinical study.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.

ABSTRACT

Objective: Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants.

Methods: Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling.

Results: Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors.

Conclusions: We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

Show MeSH

Related in: MedlinePlus

H&E stains of primary tumor tissue and orthotopic tumor from the GBM variant cell lines showing specific features of each variant.The JHH-505 primary tumor has features of a GBM such as vascular proliferation and dense cellular areas (A) while certain areas contain round, regular oligodendroglial appearing cells (B). The JHH-505 xenograft tumor also contains histological characteristics consistent with GBM-O, including dense (C) and less cellular (D) regions with oligodendroglial appearing cells. The JHU-0879 primary tumor has areas consistent with PNET with hypercellularity containing cells with scant cytoplasm and prominent nucleoli (E). The JHU-0879 xenograft also has PNET features, such as densely packed cells and prominent nucleoli (F). Arrows highlight mitotic or apoptotic cells. Magnification for panel A is 100X, panel B-F are 400X.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814135&req=5

pone.0150271.g005: H&E stains of primary tumor tissue and orthotopic tumor from the GBM variant cell lines showing specific features of each variant.The JHH-505 primary tumor has features of a GBM such as vascular proliferation and dense cellular areas (A) while certain areas contain round, regular oligodendroglial appearing cells (B). The JHH-505 xenograft tumor also contains histological characteristics consistent with GBM-O, including dense (C) and less cellular (D) regions with oligodendroglial appearing cells. The JHU-0879 primary tumor has areas consistent with PNET with hypercellularity containing cells with scant cytoplasm and prominent nucleoli (E). The JHU-0879 xenograft also has PNET features, such as densely packed cells and prominent nucleoli (F). Arrows highlight mitotic or apoptotic cells. Magnification for panel A is 100X, panel B-F are 400X.

Mentions: In cases of cell lines from patients with GBM variants, the xenografts were also compared to the primary patient tumor. JHH-505 was isolated from a GBM with an oligodendroglioma component (GBM-O). In addition to hypercellularity and neovascularization (Fig 5A), this primary tumor contained many small, round, regular cells with surrounding clear halos indicative of oligodendroglial differentiation (Fig 5B). The JHH-505 xenograft retained features of a mixed GBM, with a dominant astrocytic component (Fig 5C) but also numerous scattered oligodendroglial-like cells which were prominent in some areas (Fig 5D). JHU-0879 was derived from a GBM with PNET features. The primary tumor contained areas of densely packed cells with scant cytoplasm and prominent nucleoli (Fig 5E). The xenograft contained these features as well but the nucleoli were more prominent in the xenograft than in the primary tumor (Fig 5F). Throughout both tumors were an abundance of mitotic and apoptotic cells. This data further validates the notion that oncosphere cell lines often recapitulate the histopathological features of the original patient tumor.


Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

Binder ZA, Wilson KM, Salmasi V, Orr BA, Eberhart CG, Siu IM, Lim M, Weingart JD, Quinones-Hinojosa A, Bettegowda C, Kassam AB, Olivi A, Brem H, Riggins GJ, Gallia GL - PLoS ONE (2016)

H&E stains of primary tumor tissue and orthotopic tumor from the GBM variant cell lines showing specific features of each variant.The JHH-505 primary tumor has features of a GBM such as vascular proliferation and dense cellular areas (A) while certain areas contain round, regular oligodendroglial appearing cells (B). The JHH-505 xenograft tumor also contains histological characteristics consistent with GBM-O, including dense (C) and less cellular (D) regions with oligodendroglial appearing cells. The JHU-0879 primary tumor has areas consistent with PNET with hypercellularity containing cells with scant cytoplasm and prominent nucleoli (E). The JHU-0879 xenograft also has PNET features, such as densely packed cells and prominent nucleoli (F). Arrows highlight mitotic or apoptotic cells. Magnification for panel A is 100X, panel B-F are 400X.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814135&req=5

pone.0150271.g005: H&E stains of primary tumor tissue and orthotopic tumor from the GBM variant cell lines showing specific features of each variant.The JHH-505 primary tumor has features of a GBM such as vascular proliferation and dense cellular areas (A) while certain areas contain round, regular oligodendroglial appearing cells (B). The JHH-505 xenograft tumor also contains histological characteristics consistent with GBM-O, including dense (C) and less cellular (D) regions with oligodendroglial appearing cells. The JHU-0879 primary tumor has areas consistent with PNET with hypercellularity containing cells with scant cytoplasm and prominent nucleoli (E). The JHU-0879 xenograft also has PNET features, such as densely packed cells and prominent nucleoli (F). Arrows highlight mitotic or apoptotic cells. Magnification for panel A is 100X, panel B-F are 400X.
Mentions: In cases of cell lines from patients with GBM variants, the xenografts were also compared to the primary patient tumor. JHH-505 was isolated from a GBM with an oligodendroglioma component (GBM-O). In addition to hypercellularity and neovascularization (Fig 5A), this primary tumor contained many small, round, regular cells with surrounding clear halos indicative of oligodendroglial differentiation (Fig 5B). The JHH-505 xenograft retained features of a mixed GBM, with a dominant astrocytic component (Fig 5C) but also numerous scattered oligodendroglial-like cells which were prominent in some areas (Fig 5D). JHU-0879 was derived from a GBM with PNET features. The primary tumor contained areas of densely packed cells with scant cytoplasm and prominent nucleoli (Fig 5E). The xenograft contained these features as well but the nucleoli were more prominent in the xenograft than in the primary tumor (Fig 5F). Throughout both tumors were an abundance of mitotic and apoptotic cells. This data further validates the notion that oncosphere cell lines often recapitulate the histopathological features of the original patient tumor.

Bottom Line: When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity.Multipotency was confirmed using in vitro differentiation.These oncosphere cell lines will expand the resources available for preclinical study.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.

ABSTRACT

Objective: Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants.

Methods: Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling.

Results: Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors.

Conclusions: We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

Show MeSH
Related in: MedlinePlus