Limits...
Seeing the Forest through the Trees: Considering Roost-Site Selection at Multiple Spatial Scales.

Jachowski DS, Rota CT, Dobony CA, Ford WM, Edwards JW - PLoS ONE (2016)

Bottom Line: At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development.At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component.Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales.

View Article: PubMed Central - PubMed

Affiliation: Department of Forestry and Environmental Conservation, Clemson University, 258 Lehotsky Hall, Clemson, South Carolina, 29634-0310, United States of America.

ABSTRACT
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007-2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.

Show MeSH

Related in: MedlinePlus

Diagram illustrating 3 scales of investigation (landscape, stand, and roost tree) in Indiana bat roost-site selection at Fort Drum Military Installation, New York, USA between 2007–2011 and habitat covariates evaluated at each scale.At the landscape and stand scales, we identified used sites that were paired with 5 available points (square points) for resource selection analysis. Panel A illustrates the location of used roost sites for Indiana bat 150–282 (solid points) along with a 1976-m radius buffer (dashed line) used to define availability surrounding each roost site. The Fort Drum Installation boundary is depicted by solid black line. Panel B illustrates the location of all roost sites (solid points) and forest stands for which stand attribute data were collected are in gray. Roost-site selection at the tree scale (Panel C) was evaluated based on all available trees within a 0.0405-ha plot centered on the used roost tree.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814100&req=5

pone.0150011.g001: Diagram illustrating 3 scales of investigation (landscape, stand, and roost tree) in Indiana bat roost-site selection at Fort Drum Military Installation, New York, USA between 2007–2011 and habitat covariates evaluated at each scale.At the landscape and stand scales, we identified used sites that were paired with 5 available points (square points) for resource selection analysis. Panel A illustrates the location of used roost sites for Indiana bat 150–282 (solid points) along with a 1976-m radius buffer (dashed line) used to define availability surrounding each roost site. The Fort Drum Installation boundary is depicted by solid black line. Panel B illustrates the location of all roost sites (solid points) and forest stands for which stand attribute data were collected are in gray. Roost-site selection at the tree scale (Panel C) was evaluated based on all available trees within a 0.0405-ha plot centered on the used roost tree.

Mentions: In this study, we evaluated summer roost-site selection of Indiana bats at Fort Drum Military Installation in northwestern New York, USA, at three spatial scales: landscape, forest stand, and individual tree (Fig 1). At the landscape scale, we hypothesized that roost-site selection would be influenced by landscape-scale topographic features such as slope and aspect, habitat conditions such as forest type and distance to human development, and proximity to foraging areas [16,25]. At the forest-stand scale, we hypothesized that Indiana bat day-roost-site selection would be influenced by proximity to high-quality foraging areas and forest intra-stand characteristics such as forest community composition, area and age class, and stand condition [26,27]. At the roost-tree scale, we hypothesized that Indiana bats would select specific roost trees based on attributes such as tree species, bole size (diameter at breast height), and decay class [23,28]. Identification of factors describing roost selection at multiple scales would help inform forest management decisions aimed at providing high-quality roosting habitat for this species.


Seeing the Forest through the Trees: Considering Roost-Site Selection at Multiple Spatial Scales.

Jachowski DS, Rota CT, Dobony CA, Ford WM, Edwards JW - PLoS ONE (2016)

Diagram illustrating 3 scales of investigation (landscape, stand, and roost tree) in Indiana bat roost-site selection at Fort Drum Military Installation, New York, USA between 2007–2011 and habitat covariates evaluated at each scale.At the landscape and stand scales, we identified used sites that were paired with 5 available points (square points) for resource selection analysis. Panel A illustrates the location of used roost sites for Indiana bat 150–282 (solid points) along with a 1976-m radius buffer (dashed line) used to define availability surrounding each roost site. The Fort Drum Installation boundary is depicted by solid black line. Panel B illustrates the location of all roost sites (solid points) and forest stands for which stand attribute data were collected are in gray. Roost-site selection at the tree scale (Panel C) was evaluated based on all available trees within a 0.0405-ha plot centered on the used roost tree.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814100&req=5

pone.0150011.g001: Diagram illustrating 3 scales of investigation (landscape, stand, and roost tree) in Indiana bat roost-site selection at Fort Drum Military Installation, New York, USA between 2007–2011 and habitat covariates evaluated at each scale.At the landscape and stand scales, we identified used sites that were paired with 5 available points (square points) for resource selection analysis. Panel A illustrates the location of used roost sites for Indiana bat 150–282 (solid points) along with a 1976-m radius buffer (dashed line) used to define availability surrounding each roost site. The Fort Drum Installation boundary is depicted by solid black line. Panel B illustrates the location of all roost sites (solid points) and forest stands for which stand attribute data were collected are in gray. Roost-site selection at the tree scale (Panel C) was evaluated based on all available trees within a 0.0405-ha plot centered on the used roost tree.
Mentions: In this study, we evaluated summer roost-site selection of Indiana bats at Fort Drum Military Installation in northwestern New York, USA, at three spatial scales: landscape, forest stand, and individual tree (Fig 1). At the landscape scale, we hypothesized that roost-site selection would be influenced by landscape-scale topographic features such as slope and aspect, habitat conditions such as forest type and distance to human development, and proximity to foraging areas [16,25]. At the forest-stand scale, we hypothesized that Indiana bat day-roost-site selection would be influenced by proximity to high-quality foraging areas and forest intra-stand characteristics such as forest community composition, area and age class, and stand condition [26,27]. At the roost-tree scale, we hypothesized that Indiana bats would select specific roost trees based on attributes such as tree species, bole size (diameter at breast height), and decay class [23,28]. Identification of factors describing roost selection at multiple scales would help inform forest management decisions aimed at providing high-quality roosting habitat for this species.

Bottom Line: At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development.At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component.Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales.

View Article: PubMed Central - PubMed

Affiliation: Department of Forestry and Environmental Conservation, Clemson University, 258 Lehotsky Hall, Clemson, South Carolina, 29634-0310, United States of America.

ABSTRACT
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007-2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.

Show MeSH
Related in: MedlinePlus