Limits...
Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH

Related in: MedlinePlus

Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, based on the mean industrial requirement change for the region (the metric used in Fig 22).Top label shows the percentile.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g023: Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, based on the mean industrial requirement change for the region (the metric used in Fig 22).Top label shows the percentile.

Mentions: In this model framework, industrial water requirement, an aggregate of all industrial water use, responds to changes in per capita GDP. The baseline industrial water requirement is shown in Fig 21. A large portion of the industrial requirement is in China, with a fair amount in India and Vietnam. Fig 22 shows the inverse cumulative distribution of population-weighted percent change in industrial requirement. Industrial requirement varies considerably across scenarios, ranging from 60% increase to 440% increase from baseline, with a median of about 200%. In Fig 23, six examples of the variety of industrial water requirement changes are shown across scenarios of similar percentiles based on the mean percent change weighted by future population. Here we can see the richness of the scenario members’ patterns derived by the socio-economic modeling.


Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, based on the mean industrial requirement change for the region (the metric used in Fig 22).Top label shows the percentile.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g023: Industrial requirement change (in %) around the 10th percentile, median, and 90th percentile, two each, based on the mean industrial requirement change for the region (the metric used in Fig 22).Top label shows the percentile.
Mentions: In this model framework, industrial water requirement, an aggregate of all industrial water use, responds to changes in per capita GDP. The baseline industrial water requirement is shown in Fig 21. A large portion of the industrial requirement is in China, with a fair amount in India and Vietnam. Fig 22 shows the inverse cumulative distribution of population-weighted percent change in industrial requirement. Industrial requirement varies considerably across scenarios, ranging from 60% increase to 440% increase from baseline, with a median of about 200%. In Fig 23, six examples of the variety of industrial water requirement changes are shown across scenarios of similar percentiles based on the mean percent change weighted by future population. Here we can see the richness of the scenario members’ patterns derived by the socio-economic modeling.

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH
Related in: MedlinePlus