Limits...
Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH

Related in: MedlinePlus

Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th percentile, two each, similar to the metric used in Fig 18.Top label shows the percentile.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g019: Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th percentile, two each, similar to the metric used in Fig 18.Top label shows the percentile.

Mentions: Now we analyze the variety of domestic water requirement mapped across the region (shown in Fig 19). For the growth parameters, the variety of changes across the region is derived from the EPPA results and is important in order to be consistent in terms of the interaction of the region’s socio-economics by EPPA region (Fig 1). Fig 20 summarizes the distributional changes in domestic water requirement (2000–2050) across scenarios by presenting the 10th, 50th and 90th percentiles, calculated individually for every ASR. China is expected to see relatively small increases in domestic requirement compared to Mainland Southeast Asia and parts of India, where substantial increases are expected—between 2 and 5 times the baseline values.


Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th percentile, two each, similar to the metric used in Fig 18.Top label shows the percentile.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g019: Domestic water requirement change by region (in %) around the 10th percentile, median, and 90th percentile, two each, similar to the metric used in Fig 18.Top label shows the percentile.
Mentions: Now we analyze the variety of domestic water requirement mapped across the region (shown in Fig 19). For the growth parameters, the variety of changes across the region is derived from the EPPA results and is important in order to be consistent in terms of the interaction of the region’s socio-economics by EPPA region (Fig 1). Fig 20 summarizes the distributional changes in domestic water requirement (2000–2050) across scenarios by presenting the 10th, 50th and 90th percentiles, calculated individually for every ASR. China is expected to see relatively small increases in domestic requirement compared to Mainland Southeast Asia and parts of India, where substantial increases are expected—between 2 and 5 times the baseline values.

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH
Related in: MedlinePlus