Limits...
Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH

Related in: MedlinePlus

Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes in decadal averaged ASR irrigation requirement from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g016: Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes in decadal averaged ASR irrigation requirement from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.

Mentions: Similar to the point-wise maps of runoff shown in Fig 12, individual ASR changes in irrigation requirement are mapped in Fig 16. Since precipitation and temperature are the main drivers for both runoff and irrigation requirement estimations, we see a similar pattern in both maps, with the north drier (i.e., increased irrigation requirement) than the south although both are indicating that irrigation is more likely to increase. Since the irrigation sector is by far the largest requirement for water in this region, small changes in mean irrigation requirement can have a substantial impact on the water sector within each ASR.


Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes in decadal averaged ASR irrigation requirement from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g016: Changes from baseline in irrigation requirement (%) calculated point-wise by ASR, showing changes in decadal averaged ASR irrigation requirement from the baseline to the future scenarios averaged over 2041–2050 for the 10th, 50th, and 90th percentiles.
Mentions: Similar to the point-wise maps of runoff shown in Fig 12, individual ASR changes in irrigation requirement are mapped in Fig 16. Since precipitation and temperature are the main drivers for both runoff and irrigation requirement estimations, we see a similar pattern in both maps, with the north drier (i.e., increased irrigation requirement) than the south although both are indicating that irrigation is more likely to increase. Since the irrigation sector is by far the largest requirement for water in this region, small changes in mean irrigation requirement can have a substantial impact on the water sector within each ASR.

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH
Related in: MedlinePlus