Limits...
Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH

Related in: MedlinePlus

Schematic of connections between components of the IGSM framework and the WRS.Within the IGSM, the EPPA model produces economic projections, calculating population and GDP for each ASR. These determine municipal and industrial demands for water. Climate results from MESM are projected longitudinally via pattern scaling with archived GCM data. CLM determines runoff, and CliCrop calculates irrigation demands. Water demands and surface-water supply are fed into the WSM to optimize the routing of water across all ASRs. The resultant routing is then analyzed via water stress indicators.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g002: Schematic of connections between components of the IGSM framework and the WRS.Within the IGSM, the EPPA model produces economic projections, calculating population and GDP for each ASR. These determine municipal and industrial demands for water. Climate results from MESM are projected longitudinally via pattern scaling with archived GCM data. CLM determines runoff, and CliCrop calculates irrigation demands. Water demands and surface-water supply are fed into the WSM to optimize the routing of water across all ASRs. The resultant routing is then analyzed via water stress indicators.

Mentions: Our analysis focuses on the impact of socioeconomic growth and climate changes on the future availability and management of water resources resolved over large watersheds—Assessment Study Regions (ASRs)—across South, Southeast, and East Asia (Fig 1). The basic structure of the WRS as applied here is illustrated in Fig 2, with greater detail provided in [14].


Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

Fant C, Schlosser CA, Gao X, Strzepek K, Reilly J - PLoS ONE (2016)

Schematic of connections between components of the IGSM framework and the WRS.Within the IGSM, the EPPA model produces economic projections, calculating population and GDP for each ASR. These determine municipal and industrial demands for water. Climate results from MESM are projected longitudinally via pattern scaling with archived GCM data. CLM determines runoff, and CliCrop calculates irrigation demands. Water demands and surface-water supply are fed into the WSM to optimize the routing of water across all ASRs. The resultant routing is then analyzed via water stress indicators.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4814075&req=5

pone.0150633.g002: Schematic of connections between components of the IGSM framework and the WRS.Within the IGSM, the EPPA model produces economic projections, calculating population and GDP for each ASR. These determine municipal and industrial demands for water. Climate results from MESM are projected longitudinally via pattern scaling with archived GCM data. CLM determines runoff, and CliCrop calculates irrigation demands. Water demands and surface-water supply are fed into the WSM to optimize the routing of water across all ASRs. The resultant routing is then analyzed via water stress indicators.
Mentions: Our analysis focuses on the impact of socioeconomic growth and climate changes on the future availability and management of water resources resolved over large watersheds—Assessment Study Regions (ASRs)—across South, Southeast, and East Asia (Fig 1). The basic structure of the WRS as applied here is illustrated in Fig 2, with greater detail provided in [14].

Bottom Line: We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources.There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future.Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

View Article: PubMed Central - PubMed

Affiliation: Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, United States of America.

ABSTRACT
The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Show MeSH
Related in: MedlinePlus