Limits...
Bitter taste receptors confer diverse functions to neurons.

Delventhal R, Carlson JR - Elife (2016)

Bottom Line: Expression of individual Grs conferred strikingly different effects in different neurons.The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation.The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States.

ABSTRACT
Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers.

No MeSH data available.


Related in: MedlinePlus

The ΔGr59c mutation was generated through FLP-FRT-mediated recombination between piggybac transposon lines f03881 and f04393 (Parks et al., 2004).A ~17kb region of the genome was deleted; it encompassed Gr59c, as well as several other genes. This deletion was backcrossed to a wCS control background for 7 generations.DOI:http://dx.doi.org/10.7554/eLife.11181.012
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4764594&req=5

fig7s1: The ΔGr59c mutation was generated through FLP-FRT-mediated recombination between piggybac transposon lines f03881 and f04393 (Parks et al., 2004).A ~17kb region of the genome was deleted; it encompassed Gr59c, as well as several other genes. This deletion was backcrossed to a wCS control background for 7 generations.DOI:http://dx.doi.org/10.7554/eLife.11181.012

Mentions: Second, we constructed a deletion of Gr59c (△Gr59c) (Figure 7—figure supplement 1). We hypothesized that since Gr59c expression confers a response to LOB, DEN, and BER, and since these three tastants elicit the greatest mean responses from I-a among all the tastants in the panel, that a △Gr59c I-a sensillum might display weak or no responses to all tastants of the panel. If so, moreover, it might provide a particularly useful in vivo system in which to express other Grs.


Bitter taste receptors confer diverse functions to neurons.

Delventhal R, Carlson JR - Elife (2016)

The ΔGr59c mutation was generated through FLP-FRT-mediated recombination between piggybac transposon lines f03881 and f04393 (Parks et al., 2004).A ~17kb region of the genome was deleted; it encompassed Gr59c, as well as several other genes. This deletion was backcrossed to a wCS control background for 7 generations.DOI:http://dx.doi.org/10.7554/eLife.11181.012
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4764594&req=5

fig7s1: The ΔGr59c mutation was generated through FLP-FRT-mediated recombination between piggybac transposon lines f03881 and f04393 (Parks et al., 2004).A ~17kb region of the genome was deleted; it encompassed Gr59c, as well as several other genes. This deletion was backcrossed to a wCS control background for 7 generations.DOI:http://dx.doi.org/10.7554/eLife.11181.012
Mentions: Second, we constructed a deletion of Gr59c (△Gr59c) (Figure 7—figure supplement 1). We hypothesized that since Gr59c expression confers a response to LOB, DEN, and BER, and since these three tastants elicit the greatest mean responses from I-a among all the tastants in the panel, that a △Gr59c I-a sensillum might display weak or no responses to all tastants of the panel. If so, moreover, it might provide a particularly useful in vivo system in which to express other Grs.

Bottom Line: Expression of individual Grs conferred strikingly different effects in different neurons.The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation.The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States.

ABSTRACT
Bitter compounds elicit an aversive response. In Drosophila, bitter-sensitive taste neurons coexpress many members of the Gr family of taste receptors. However, the molecular logic of bitter signaling is unknown. We used an in vivo expression approach to analyze the logic of bitter taste signaling. Ectopic or overexpression of bitter Grs increased endogenous responses or conferred novel responses. Surprisingly, expression of Grs also suppressed many endogenous bitter responses. Conversely, deletion of an endogenous Gr led to novel responses. Expression of individual Grs conferred strikingly different effects in different neurons. The results support a model in which bitter Grs interact, exhibiting competition, inhibition, or activation. The results have broad implications for the problem of how taste systems evolve to detect new environmental dangers.

No MeSH data available.


Related in: MedlinePlus