Limits...
Use of mobile and cordless phones and cognition in Australian primary school children: a prospective cohort study.

Redmayne M, Smith CL, Benke G, Croft RJ, Dalecki A, Dimitriadis C, Kaufman J, Macleod S, Sim MR, Wolfe R, Abramson MJ - Environ Health (2016)

Bottom Line: Small changes have been found in older children.The hypothesis was that children who used these phones would display differences in cognitive function compared to those who did not.CP results may be more reliable as parents estimated children's phone use and the CPs were at home; results for CP use were broadly consistent with our earlier study of older children.

View Article: PubMed Central - PubMed

Affiliation: Population Health Research on Electromagnetic Energy (PRESEE), School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, 3004, Australia. mary.redmayne@monash.edu.

ABSTRACT

Background: Use of mobile (MP) and cordless phones (CP) is common among young children, but whether the resulting radiofrequency exposure affects development of cognitive skills is not known. Small changes have been found in older children. This study focused on children's exposures to MP and CP and cognitive development. The hypothesis was that children who used these phones would display differences in cognitive function compared to those who did not.

Methods: We recruited 619 fourth-grade students (8-11 years) from 37 schools around Melbourne and Wollongong, Australia. Participants completed a short questionnaire, a computerised cognitive test battery, and the Stroop colour-word test. Parents completed exposure questionnaires on their child's behalf. Analysis used multiple linear regression. The principal exposure-metrics were the total number of reported MP and CP calls weekly categorised into no use ('None'); use less than or equal to the median amount ('Some'); and use more than the median ('More'). The median number of calls/week was 2.5 for MP and 2.0 for CP.

Results: MP and CP use for calls was low; and only 5 of 78 comparisons of phone use with cognitive measures were statistically significant. The reaction time to the response-inhibition task was slower in those who used an MP 'More' compared to the 'Some' use group and non-users. For CP use, the response time to the Stroop interference task was slower in the 'More' group versus the 'Some' group, and accuracy was worse in visual recognition and episodic memory tasks and the identification task. In an additional exploratory analysis, there was some evidence of a gender effect on mean reaction times. The highest users for both phone types were girls.

Conclusions: Overall, there was little evidence cognitive function was associated with CP and MP use in this age group. Although there was some evidence that effects of MP and CP use on cognition may differ by gender, this needs further exploration. CP results may be more reliable as parents estimated children's phone use and the CPs were at home; results for CP use were broadly consistent with our earlier study of older children.

No MeSH data available.


Related in: MedlinePlus

Parent and student responses on student mobile phone ownership: stratified by age. Legend: The proportions of parents and students reporting ownership or use of a mobile phone by students: stratified by age. Many more students reported owning or using a mobile phone than their parents reported suggesting use/exposure of which parents are unaware
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4759913&req=5

Fig1: Parent and student responses on student mobile phone ownership: stratified by age. Legend: The proportions of parents and students reporting ownership or use of a mobile phone by students: stratified by age. Many more students reported owning or using a mobile phone than their parents reported suggesting use/exposure of which parents are unaware

Mentions: Parents were asked “does your child currently own or use a mobile phone”. Children were asked in two questions “do you currently own a mobile phone” and “do you currently use a mobile phone”. For the 603 students where both the child and parent responded, 187 (31 %) of parents indicated their child currently owned or used a MP. This was significantly lower (p < 0.001) than the 343 (57 %) of children who said they owned or used one (Fig. 1). This represented agreement for 485 (64 %) respondents and disagreement for 218 (36 %). For the 218 discordant responses, 187 parents said the child did not own or use a phone. Of these, 20 % of children said they owned a MP and 95 % said they used one. A sensitivity analysis for the association between MP calls and cognitive outcomes is given for the discordant and concordant subsamples in Additional file 1: Tables S1 and 2, available online.Fig. 1


Use of mobile and cordless phones and cognition in Australian primary school children: a prospective cohort study.

Redmayne M, Smith CL, Benke G, Croft RJ, Dalecki A, Dimitriadis C, Kaufman J, Macleod S, Sim MR, Wolfe R, Abramson MJ - Environ Health (2016)

Parent and student responses on student mobile phone ownership: stratified by age. Legend: The proportions of parents and students reporting ownership or use of a mobile phone by students: stratified by age. Many more students reported owning or using a mobile phone than their parents reported suggesting use/exposure of which parents are unaware
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4759913&req=5

Fig1: Parent and student responses on student mobile phone ownership: stratified by age. Legend: The proportions of parents and students reporting ownership or use of a mobile phone by students: stratified by age. Many more students reported owning or using a mobile phone than their parents reported suggesting use/exposure of which parents are unaware
Mentions: Parents were asked “does your child currently own or use a mobile phone”. Children were asked in two questions “do you currently own a mobile phone” and “do you currently use a mobile phone”. For the 603 students where both the child and parent responded, 187 (31 %) of parents indicated their child currently owned or used a MP. This was significantly lower (p < 0.001) than the 343 (57 %) of children who said they owned or used one (Fig. 1). This represented agreement for 485 (64 %) respondents and disagreement for 218 (36 %). For the 218 discordant responses, 187 parents said the child did not own or use a phone. Of these, 20 % of children said they owned a MP and 95 % said they used one. A sensitivity analysis for the association between MP calls and cognitive outcomes is given for the discordant and concordant subsamples in Additional file 1: Tables S1 and 2, available online.Fig. 1

Bottom Line: Small changes have been found in older children.The hypothesis was that children who used these phones would display differences in cognitive function compared to those who did not.CP results may be more reliable as parents estimated children's phone use and the CPs were at home; results for CP use were broadly consistent with our earlier study of older children.

View Article: PubMed Central - PubMed

Affiliation: Population Health Research on Electromagnetic Energy (PRESEE), School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, 3004, Australia. mary.redmayne@monash.edu.

ABSTRACT

Background: Use of mobile (MP) and cordless phones (CP) is common among young children, but whether the resulting radiofrequency exposure affects development of cognitive skills is not known. Small changes have been found in older children. This study focused on children's exposures to MP and CP and cognitive development. The hypothesis was that children who used these phones would display differences in cognitive function compared to those who did not.

Methods: We recruited 619 fourth-grade students (8-11 years) from 37 schools around Melbourne and Wollongong, Australia. Participants completed a short questionnaire, a computerised cognitive test battery, and the Stroop colour-word test. Parents completed exposure questionnaires on their child's behalf. Analysis used multiple linear regression. The principal exposure-metrics were the total number of reported MP and CP calls weekly categorised into no use ('None'); use less than or equal to the median amount ('Some'); and use more than the median ('More'). The median number of calls/week was 2.5 for MP and 2.0 for CP.

Results: MP and CP use for calls was low; and only 5 of 78 comparisons of phone use with cognitive measures were statistically significant. The reaction time to the response-inhibition task was slower in those who used an MP 'More' compared to the 'Some' use group and non-users. For CP use, the response time to the Stroop interference task was slower in the 'More' group versus the 'Some' group, and accuracy was worse in visual recognition and episodic memory tasks and the identification task. In an additional exploratory analysis, there was some evidence of a gender effect on mean reaction times. The highest users for both phone types were girls.

Conclusions: Overall, there was little evidence cognitive function was associated with CP and MP use in this age group. Although there was some evidence that effects of MP and CP use on cognition may differ by gender, this needs further exploration. CP results may be more reliable as parents estimated children's phone use and the CPs were at home; results for CP use were broadly consistent with our earlier study of older children.

No MeSH data available.


Related in: MedlinePlus