Limits...
Variable bin size selection for periestimulus time histograms (PSTH) with minimum mean square error criteria

View Article: PubMed Central - HTML

No MeSH data available.


Comparing the costs and time efforts of the algorithms.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4697651&req=5

Figure 1: Comparing the costs and time efforts of the algorithms.

Mentions: Here we extend previous results by calculating the cost function that minimizes mean square error for variable bin sizes with the same assumptions used previously for time varying Poisson processes . To minimize this nonlinear and nonconvex cost function, we utilize an array of methods some of which are widely used for nonlinear optimization, namely: Active set, Simultaneous perturbation stochastic approximation (SPSA), Genetic Algorithm and an approximate heuristic algorithm. Average performance of each algorithm on a typical simulated neuronal firing is calculated using 50 iterations. All methods resulted in a lower cost function compared to fixed bin size as expected. Plotting the final cost vs the algorithm run time shows that the method of 'Active set' overall has the best cost reduction while still being reasonably fast compared to the fixed bin size approach (Figure 1) . Further investigation of the properties of this cost function and developing computationally efficient methods for its minimization will be the basis of future work.


Variable bin size selection for periestimulus time histograms (PSTH) with minimum mean square error criteria
Comparing the costs and time efforts of the algorithms.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4697651&req=5

Figure 1: Comparing the costs and time efforts of the algorithms.
Mentions: Here we extend previous results by calculating the cost function that minimizes mean square error for variable bin sizes with the same assumptions used previously for time varying Poisson processes . To minimize this nonlinear and nonconvex cost function, we utilize an array of methods some of which are widely used for nonlinear optimization, namely: Active set, Simultaneous perturbation stochastic approximation (SPSA), Genetic Algorithm and an approximate heuristic algorithm. Average performance of each algorithm on a typical simulated neuronal firing is calculated using 50 iterations. All methods resulted in a lower cost function compared to fixed bin size as expected. Plotting the final cost vs the algorithm run time shows that the method of 'Active set' overall has the best cost reduction while still being reasonably fast compared to the fixed bin size approach (Figure 1) . Further investigation of the properties of this cost function and developing computationally efficient methods for its minimization will be the basis of future work.

View Article: PubMed Central - HTML

No MeSH data available.