Limits...
Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.

Bui TP, Ritari J, Boeren S, de Waard P, Plugge CM, de Vos WM - Nat Commun (2015)

Bottom Line: Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate.The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine.Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.

ABSTRACT
Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

Show MeSH

Related in: MedlinePlus

Elucidation of lysine pathway via 1H-decoupled 13C-NMR spectrum and 2D HMBC spectrum.(a) High-resolution 1H-decoupled 13C-NMR spectra showing L-[6-13C]lysine 13C-labelled fermentation products. [2-13C]butyrate, [2-13C]acetate and [4-13C]butyrate had a chemical shift of 42.33, 25.99 and 15.95 p.p.m., respectively. (b) 2D HMBC spectrum for [6-13C]lysine is shown. (c) Percentages of labelled butyrate fractions (see Supplementary Figs 2 and 3 for more details).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4697335&req=5

f3: Elucidation of lysine pathway via 1H-decoupled 13C-NMR spectrum and 2D HMBC spectrum.(a) High-resolution 1H-decoupled 13C-NMR spectra showing L-[6-13C]lysine 13C-labelled fermentation products. [2-13C]butyrate, [2-13C]acetate and [4-13C]butyrate had a chemical shift of 42.33, 25.99 and 15.95 p.p.m., respectively. (b) 2D HMBC spectrum for [6-13C]lysine is shown. (c) Percentages of labelled butyrate fractions (see Supplementary Figs 2 and 3 for more details).

Mentions: To elucidate the butyrogenic pathway of Intestinimonas AF211, we applied in vivo1H-decoupled 13C-NMR analysis of the culture supernatants of cells grown with L-[2-13C]lysine, L-[6-13C]lysine and lysine plus [2-13C]acetate as described previously24. Growth of Intestinimonas AF211 on L-[6-13C]lysine resulted in its complete conversion into [4-13C]butyrate, [2-13C]acetate, [2-13C]butyrate and [2,4-13C]butyrate (Fig. 3a, left). Proton-detected multiple-bond spectroscopy was also performed with the supernatant and based on the Heteronuclear Multiple-Bond Correlations (HMBCs) we could estimate the percentages of [4-13C]butyrate, [2-13C]butyrate and [2,4-13C]butyrate out of all labelled butyrate (Fig. 3b, left). Combination of this quantitative and kinetic analysis showed that at all time points the main product formed from L-[6-13C]lysine was [4-13C]butyrate (71%; Fig. 3c), indicating that cleavage of lysine occurred between the C2 and C3 residues. Both [4-13C]butyrate, [2-13C]butyrate and [2,4-13C]butyrate were detected in the cells grown in lysine plus [2-13C]acetate (Fig. 3a,b, right). This is indicative of simultaneous operation of the acetyl-CoA and lysine degradation pathways (Fig. 2) and explained the formation of minor amounts of [2-13C]acetate, [2-13C]butyrate and [2,4-13C]butyrate in L-[6-13C]lysine. Altogether, these data provide molecular evidence that the lysine pathway was substantially active and generated the intermediates for the acetyl-CoA pathway in Intestinimonas AF211. Similar results supporting the simultaneous operation of the two pathways were obtained by using D,L-[2-13C]lysine in growing cells of Intestinimonas AF211, and the NMR analysis also confirmed the exclusive selectivity for L-lysine (Supplementary Fig. 2). High-performance liquid chromatography (HPLC) analysis confirmed the nearly complete conversion of lysine to equimolar amounts of butyrate and acetate as indicated above (Fig. 1a). The molecular events that explain the observed isotopomers derived from [13C]lysine were reconstructed (Supplementary Fig. 3) and the deduced metabolic pathway revealed 10 enzymatic reactions that were further characterized by genomic, proteomic and enzyme studies (Fig. 2).


Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.

Bui TP, Ritari J, Boeren S, de Waard P, Plugge CM, de Vos WM - Nat Commun (2015)

Elucidation of lysine pathway via 1H-decoupled 13C-NMR spectrum and 2D HMBC spectrum.(a) High-resolution 1H-decoupled 13C-NMR spectra showing L-[6-13C]lysine 13C-labelled fermentation products. [2-13C]butyrate, [2-13C]acetate and [4-13C]butyrate had a chemical shift of 42.33, 25.99 and 15.95 p.p.m., respectively. (b) 2D HMBC spectrum for [6-13C]lysine is shown. (c) Percentages of labelled butyrate fractions (see Supplementary Figs 2 and 3 for more details).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4697335&req=5

f3: Elucidation of lysine pathway via 1H-decoupled 13C-NMR spectrum and 2D HMBC spectrum.(a) High-resolution 1H-decoupled 13C-NMR spectra showing L-[6-13C]lysine 13C-labelled fermentation products. [2-13C]butyrate, [2-13C]acetate and [4-13C]butyrate had a chemical shift of 42.33, 25.99 and 15.95 p.p.m., respectively. (b) 2D HMBC spectrum for [6-13C]lysine is shown. (c) Percentages of labelled butyrate fractions (see Supplementary Figs 2 and 3 for more details).
Mentions: To elucidate the butyrogenic pathway of Intestinimonas AF211, we applied in vivo1H-decoupled 13C-NMR analysis of the culture supernatants of cells grown with L-[2-13C]lysine, L-[6-13C]lysine and lysine plus [2-13C]acetate as described previously24. Growth of Intestinimonas AF211 on L-[6-13C]lysine resulted in its complete conversion into [4-13C]butyrate, [2-13C]acetate, [2-13C]butyrate and [2,4-13C]butyrate (Fig. 3a, left). Proton-detected multiple-bond spectroscopy was also performed with the supernatant and based on the Heteronuclear Multiple-Bond Correlations (HMBCs) we could estimate the percentages of [4-13C]butyrate, [2-13C]butyrate and [2,4-13C]butyrate out of all labelled butyrate (Fig. 3b, left). Combination of this quantitative and kinetic analysis showed that at all time points the main product formed from L-[6-13C]lysine was [4-13C]butyrate (71%; Fig. 3c), indicating that cleavage of lysine occurred between the C2 and C3 residues. Both [4-13C]butyrate, [2-13C]butyrate and [2,4-13C]butyrate were detected in the cells grown in lysine plus [2-13C]acetate (Fig. 3a,b, right). This is indicative of simultaneous operation of the acetyl-CoA and lysine degradation pathways (Fig. 2) and explained the formation of minor amounts of [2-13C]acetate, [2-13C]butyrate and [2,4-13C]butyrate in L-[6-13C]lysine. Altogether, these data provide molecular evidence that the lysine pathway was substantially active and generated the intermediates for the acetyl-CoA pathway in Intestinimonas AF211. Similar results supporting the simultaneous operation of the two pathways were obtained by using D,L-[2-13C]lysine in growing cells of Intestinimonas AF211, and the NMR analysis also confirmed the exclusive selectivity for L-lysine (Supplementary Fig. 2). High-performance liquid chromatography (HPLC) analysis confirmed the nearly complete conversion of lysine to equimolar amounts of butyrate and acetate as indicated above (Fig. 1a). The molecular events that explain the observed isotopomers derived from [13C]lysine were reconstructed (Supplementary Fig. 3) and the deduced metabolic pathway revealed 10 enzymatic reactions that were further characterized by genomic, proteomic and enzyme studies (Fig. 2).

Bottom Line: Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate.The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine.Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.

ABSTRACT
Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

Show MeSH
Related in: MedlinePlus