Limits...
Dental follicle stem cells in bone regeneration on titanium implants.

Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, Dirzu N, Câmpian R, Băciuţ G, Popa C, Simon S, Berce P, Băciuţ M, Crisan B - BMC Biotechnol. (2015)

Bottom Line: Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFβ1.Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage.Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral Rehabilitation, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 15 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania. ondineluc@yahoo.com.

ABSTRACT

Background: We aimed to demonstrate that DF stem cells from impacted molars and canines can be used to improve bone regeneration on titanium implants surfaces. This study highlights the presence of stem cells in DF, their potential to adhere and differentiate into osteoblasts on different types of titanium surfaces.

Results: Isolated cells from the harvested DF tissue from impacted canine/molars, expressed stem cells markers. Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFβ1. The presence of growth factors until 28 days in medium maintained the cells in an earlier stage of differentiation with a lower level of specific bone proteins and a higher expression of alkaline phosphatase (ALP). Influence of titanium implants with different bioactive coatings, hydroxyapatite (TiHA) and with silicatitanate (TiSiO2), and porous Ti6Al7Nb implants as control (TiCtrl), was studied in terms of cell adhesion and viability. Ti HA implants proved to be more favorable for adhesion and proliferation of DF stem cells in first days of cultivation. The influence of titanium coatings and osteogenic differentiation mediums with or without growth factors were evaluated. Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage. The best sustained mineralization process evaluated by immuno-cytochemical staining, scanning electron microscopy and Ca(2+) quantification was observed for TiHA implants with a higher expression of ALP, collagen and Ca(2+) deposition. Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining. These findings demonstrated that even in absence of exogenous osteogenic factors, TiHA implants and in a lesser extent TiCtrl and TiSiO2 implants can induce and sustain osteogenic differentiation of DF stem cells, by their chemical and topographical properties.

Conclusions: Our research demonstrated that DF stem cells have a spontaneous tendency for osteogenic differentiation and can be used for improving bone regeneration on titanium implants surfaces.

Show MeSH

Related in: MedlinePlus

Fluorescence images of immunocytochemical staining of DF stem cells induced for osteogenic differentiation using simple osteogenic medium in upper panel: (a) osteocalcin (OC FITC), (b) osteonectine (ON FITC), (c) osteopontin (OP FITC) and (d) alkaline phosphatase (ALP FITC). In the lower panel are illustrated the induced expression of same osteogenic markers when DF stem cells were cultivated in presence of complex osteogenic medium: (e) OC FITC, (f) ON-FITC, (g) OP-FITC and (h) ALP-FITC. Nuclei were counterstained with DAPI (Magnification ×400)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4697321&req=5

Fig6: Fluorescence images of immunocytochemical staining of DF stem cells induced for osteogenic differentiation using simple osteogenic medium in upper panel: (a) osteocalcin (OC FITC), (b) osteonectine (ON FITC), (c) osteopontin (OP FITC) and (d) alkaline phosphatase (ALP FITC). In the lower panel are illustrated the induced expression of same osteogenic markers when DF stem cells were cultivated in presence of complex osteogenic medium: (e) OC FITC, (f) ON-FITC, (g) OP-FITC and (h) ALP-FITC. Nuclei were counterstained with DAPI (Magnification ×400)

Mentions: A comparative study was carried to determine the influence of culture medium composition on osteogenic differentiation of DF stem cells. The simple osteogenic medium consisting of ascorbic acid, β glicero-phosphate and dexamethazone induced a more stronger expression of non-collagenous proteins osteocalcin (OC), osteonectine (ON), osteopontin (OP) and alkaline phosphatase (ALP) as shown by immunocytochemical staining of cells after 3 weeks of cultivation. A certain difference is observed between OC and OS medium, the cells cultivated with OS medium expressed in a higher extent bone specific non-collagenous proteins OP, ON and OC (Fig. 6a, b, c). Instead, for cells cultivated with OC medium we noticed a more intense staining for ALP (Fig. 6h). Cells exhibited a particular patch distribution of bone markers present both in intracellular and extracellular space, related with formation of the novo bone matrix. We also compared the DF stem cells cultivated in standard stem cell medium for 3 weeks in terms of osteopontin and alkaline phosphatase expression. A weak expression is observed in these images for ALP and negative staining for OP as shown in Additional file 1: Figure S5.Fig. 6


Dental follicle stem cells in bone regeneration on titanium implants.

Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, Dirzu N, Câmpian R, Băciuţ G, Popa C, Simon S, Berce P, Băciuţ M, Crisan B - BMC Biotechnol. (2015)

Fluorescence images of immunocytochemical staining of DF stem cells induced for osteogenic differentiation using simple osteogenic medium in upper panel: (a) osteocalcin (OC FITC), (b) osteonectine (ON FITC), (c) osteopontin (OP FITC) and (d) alkaline phosphatase (ALP FITC). In the lower panel are illustrated the induced expression of same osteogenic markers when DF stem cells were cultivated in presence of complex osteogenic medium: (e) OC FITC, (f) ON-FITC, (g) OP-FITC and (h) ALP-FITC. Nuclei were counterstained with DAPI (Magnification ×400)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4697321&req=5

Fig6: Fluorescence images of immunocytochemical staining of DF stem cells induced for osteogenic differentiation using simple osteogenic medium in upper panel: (a) osteocalcin (OC FITC), (b) osteonectine (ON FITC), (c) osteopontin (OP FITC) and (d) alkaline phosphatase (ALP FITC). In the lower panel are illustrated the induced expression of same osteogenic markers when DF stem cells were cultivated in presence of complex osteogenic medium: (e) OC FITC, (f) ON-FITC, (g) OP-FITC and (h) ALP-FITC. Nuclei were counterstained with DAPI (Magnification ×400)
Mentions: A comparative study was carried to determine the influence of culture medium composition on osteogenic differentiation of DF stem cells. The simple osteogenic medium consisting of ascorbic acid, β glicero-phosphate and dexamethazone induced a more stronger expression of non-collagenous proteins osteocalcin (OC), osteonectine (ON), osteopontin (OP) and alkaline phosphatase (ALP) as shown by immunocytochemical staining of cells after 3 weeks of cultivation. A certain difference is observed between OC and OS medium, the cells cultivated with OS medium expressed in a higher extent bone specific non-collagenous proteins OP, ON and OC (Fig. 6a, b, c). Instead, for cells cultivated with OC medium we noticed a more intense staining for ALP (Fig. 6h). Cells exhibited a particular patch distribution of bone markers present both in intracellular and extracellular space, related with formation of the novo bone matrix. We also compared the DF stem cells cultivated in standard stem cell medium for 3 weeks in terms of osteopontin and alkaline phosphatase expression. A weak expression is observed in these images for ALP and negative staining for OP as shown in Additional file 1: Figure S5.Fig. 6

Bottom Line: Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFβ1.Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage.Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral Rehabilitation, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 15 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania. ondineluc@yahoo.com.

ABSTRACT

Background: We aimed to demonstrate that DF stem cells from impacted molars and canines can be used to improve bone regeneration on titanium implants surfaces. This study highlights the presence of stem cells in DF, their potential to adhere and differentiate into osteoblasts on different types of titanium surfaces.

Results: Isolated cells from the harvested DF tissue from impacted canine/molars, expressed stem cells markers. Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFβ1. The presence of growth factors until 28 days in medium maintained the cells in an earlier stage of differentiation with a lower level of specific bone proteins and a higher expression of alkaline phosphatase (ALP). Influence of titanium implants with different bioactive coatings, hydroxyapatite (TiHA) and with silicatitanate (TiSiO2), and porous Ti6Al7Nb implants as control (TiCtrl), was studied in terms of cell adhesion and viability. Ti HA implants proved to be more favorable for adhesion and proliferation of DF stem cells in first days of cultivation. The influence of titanium coatings and osteogenic differentiation mediums with or without growth factors were evaluated. Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage. The best sustained mineralization process evaluated by immuno-cytochemical staining, scanning electron microscopy and Ca(2+) quantification was observed for TiHA implants with a higher expression of ALP, collagen and Ca(2+) deposition. Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining. These findings demonstrated that even in absence of exogenous osteogenic factors, TiHA implants and in a lesser extent TiCtrl and TiSiO2 implants can induce and sustain osteogenic differentiation of DF stem cells, by their chemical and topographical properties.

Conclusions: Our research demonstrated that DF stem cells have a spontaneous tendency for osteogenic differentiation and can be used for improving bone regeneration on titanium implants surfaces.

Show MeSH
Related in: MedlinePlus