Limits...
Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

Pilehvar S, De Wael K - Biosensors (Basel) (2015)

Bottom Line: The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction.Since its first discovery, fullerene-C60 has been the object of extensive research.We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

View Article: PubMed Central - PubMed

Affiliation: AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. Sanaz.pilehvar@uantwerpen.be.

ABSTRACT
Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

Show MeSH
Schematic representation of C60 [1].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4697141&req=5

biosensors-05-00712-f001: Schematic representation of C60 [1].

Mentions: Fullerene is built up of fused pentagons and hexagons forming a curved structure. The smallest stable, and the most abundant, fullerene obtained by the usual preparation method is the Ih-symmetrical buckminsterfullerene C60. The next stable homologue is C70 followed by higher fullerenes C74, C76, C78, C80, C82, C84, and so on [13,14]. Since the discovery of fullerenes, buckminsterfullerene (C60) has fascinated a large number of researchers due to its remarkable stability and electrochemical properties. The stability of the C60 molecules is due to the geodesic and electronic bonding present in its structure (Figure 1). In 1966, Deadalus (also known as D.E.H Jones) considered the possibility of making a large hollow carbon cage (giant fullerene). Later on, in 1970, Osawa first proposed the spherical Ih-symmetric football structure for the C60 molecule. In 1984, it was observed that upon laser vaporization of graphite large carbon clusters of Cn with n = 30–190 can be produced. The breakthrough in the discovery of the fullerene happened in 1985 when Kroto and Smalley proved the presence of C60 and C70 which can be produced under specific clustering conditions. The second breakthrough in fullerene research was achieved by Kratschmer and Huffman. They invented the laboratory analogues of interstellar dust by vaporization of graphite rods in a helium atmosphere and observed that upon choosing the right helium pressure, the IR spectrum shows four sharp strong absorption lines which were attributed to C60 [11,15].


Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

Pilehvar S, De Wael K - Biosensors (Basel) (2015)

Schematic representation of C60 [1].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4697141&req=5

biosensors-05-00712-f001: Schematic representation of C60 [1].
Mentions: Fullerene is built up of fused pentagons and hexagons forming a curved structure. The smallest stable, and the most abundant, fullerene obtained by the usual preparation method is the Ih-symmetrical buckminsterfullerene C60. The next stable homologue is C70 followed by higher fullerenes C74, C76, C78, C80, C82, C84, and so on [13,14]. Since the discovery of fullerenes, buckminsterfullerene (C60) has fascinated a large number of researchers due to its remarkable stability and electrochemical properties. The stability of the C60 molecules is due to the geodesic and electronic bonding present in its structure (Figure 1). In 1966, Deadalus (also known as D.E.H Jones) considered the possibility of making a large hollow carbon cage (giant fullerene). Later on, in 1970, Osawa first proposed the spherical Ih-symmetric football structure for the C60 molecule. In 1984, it was observed that upon laser vaporization of graphite large carbon clusters of Cn with n = 30–190 can be produced. The breakthrough in the discovery of the fullerene happened in 1985 when Kroto and Smalley proved the presence of C60 and C70 which can be produced under specific clustering conditions. The second breakthrough in fullerene research was achieved by Kratschmer and Huffman. They invented the laboratory analogues of interstellar dust by vaporization of graphite rods in a helium atmosphere and observed that upon choosing the right helium pressure, the IR spectrum shows four sharp strong absorption lines which were attributed to C60 [11,15].

Bottom Line: The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction.Since its first discovery, fullerene-C60 has been the object of extensive research.We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

View Article: PubMed Central - PubMed

Affiliation: AXES Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium. Sanaz.pilehvar@uantwerpen.be.

ABSTRACT
Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

Show MeSH