Limits...
Epigenetic DNA Methylation Linked to Social Dominance.

Lenkov K, Lee MH, Lenkov OD, Swafford A, Fernald RD - PLoS ONE (2015)

Bottom Line: We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters.Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank.This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior.

View Article: PubMed Central - PubMed

Affiliation: Biology Department, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, United States of America.

ABSTRACT
Social status hierarchies are ubiquitous in vertebrate social systems, including humans. It is well known that social rank can influence quality of life dramatically among members of social groups. For example, high-ranking individuals have greater access to resources, including food and mating prerogatives that, in turn, have a positive impact on their reproductive success and health. In contrast low ranking individuals typically have limited reproductive success and may experience lasting social and physiological costs. Ultimately, social rank and behavior are regulated by changes in gene expression. However, little is known about mechanisms that transduce social cues into transcriptional changes. Since social behavior is a dynamic process, we hypothesized that a molecular mechanism such as DNA methylation might play a role these changes. To test this hypothesis, we used an African cichlid fish, Astatotilapia burtoni, in which social rank dictates reproductive access. We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters. Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank. In contrast, those with inhibited methylation processes and thus lower methylation levels were statistically highly unlikely to ascend in rank. This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior.

Show MeSH

Related in: MedlinePlus

(A) Animals that had never been socially dominant were divided into three groups of size matched pairs. (B) In control animals, both members of the pair received vehicle injections (N = 10 pairs), in experimental animals, in one group (left) one member of the group received L-methionine (N = 12) and the other received vehicle control (N = 12), while in the other group (right), one member of the pair received zebularine, (N = 11) and the other received vehicle control (N = 11). (C) Animals injected with L-methionine were significantly more likely to become socially dominant, while those injected with zebularine were significantly more likely to remain non-dominant.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4696829&req=5

pone.0144750.g001: (A) Animals that had never been socially dominant were divided into three groups of size matched pairs. (B) In control animals, both members of the pair received vehicle injections (N = 10 pairs), in experimental animals, in one group (left) one member of the group received L-methionine (N = 12) and the other received vehicle control (N = 12), while in the other group (right), one member of the pair received zebularine, (N = 11) and the other received vehicle control (N = 11). (C) Animals injected with L-methionine were significantly more likely to become socially dominant, while those injected with zebularine were significantly more likely to remain non-dominant.

Mentions: We measured the effect of DNA methylation modifying agents on the outcome of fights that distinguish socially dominant from non-dominant males. To do this, we compared the relative success of non-dominant animals becoming dominant between two treatments (Fig 1).


Epigenetic DNA Methylation Linked to Social Dominance.

Lenkov K, Lee MH, Lenkov OD, Swafford A, Fernald RD - PLoS ONE (2015)

(A) Animals that had never been socially dominant were divided into three groups of size matched pairs. (B) In control animals, both members of the pair received vehicle injections (N = 10 pairs), in experimental animals, in one group (left) one member of the group received L-methionine (N = 12) and the other received vehicle control (N = 12), while in the other group (right), one member of the pair received zebularine, (N = 11) and the other received vehicle control (N = 11). (C) Animals injected with L-methionine were significantly more likely to become socially dominant, while those injected with zebularine were significantly more likely to remain non-dominant.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4696829&req=5

pone.0144750.g001: (A) Animals that had never been socially dominant were divided into three groups of size matched pairs. (B) In control animals, both members of the pair received vehicle injections (N = 10 pairs), in experimental animals, in one group (left) one member of the group received L-methionine (N = 12) and the other received vehicle control (N = 12), while in the other group (right), one member of the pair received zebularine, (N = 11) and the other received vehicle control (N = 11). (C) Animals injected with L-methionine were significantly more likely to become socially dominant, while those injected with zebularine were significantly more likely to remain non-dominant.
Mentions: We measured the effect of DNA methylation modifying agents on the outcome of fights that distinguish socially dominant from non-dominant males. To do this, we compared the relative success of non-dominant animals becoming dominant between two treatments (Fig 1).

Bottom Line: We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters.Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank.This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior.

View Article: PubMed Central - PubMed

Affiliation: Biology Department, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, United States of America.

ABSTRACT
Social status hierarchies are ubiquitous in vertebrate social systems, including humans. It is well known that social rank can influence quality of life dramatically among members of social groups. For example, high-ranking individuals have greater access to resources, including food and mating prerogatives that, in turn, have a positive impact on their reproductive success and health. In contrast low ranking individuals typically have limited reproductive success and may experience lasting social and physiological costs. Ultimately, social rank and behavior are regulated by changes in gene expression. However, little is known about mechanisms that transduce social cues into transcriptional changes. Since social behavior is a dynamic process, we hypothesized that a molecular mechanism such as DNA methylation might play a role these changes. To test this hypothesis, we used an African cichlid fish, Astatotilapia burtoni, in which social rank dictates reproductive access. We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters. Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank. In contrast, those with inhibited methylation processes and thus lower methylation levels were statistically highly unlikely to ascend in rank. This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior.

Show MeSH
Related in: MedlinePlus