Limits...
Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014.

Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, Tolli R, D'Incau M, Staffolani M, Di Giannatale E, Hendriksen RS, Battisti A - PLoS ONE (2015)

Bottom Line: It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment.This emerging clone of S.Since S.

View Article: PubMed Central - PubMed

Affiliation: Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy.

ABSTRACT
We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013-2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011-2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001-2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280-320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.

Show MeSH

Related in: MedlinePlus

XbaI PFGE macrorestriction cluster analysis and antimicrobial resistance patterns of 91 ESC-susceptible and ESC-resistant Salmonella Infantis (ST32) from humans, animals and meats thereof, 2001–2014.Abbreviations: ESC-R: Extended-spectrum cephalosporin resistance; AMP: ampicillin; CTX: cefotaxime; CHL: chloramphenicol; CIP: ciprofloxacin; NAL: nalidixic acid; STR: streptomycin; KAN: kanamycin; GEN: gentamicin; TET: tetracycline; SMX: sulfamethoxazole; TMP: trimethoprim
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4696813&req=5

pone.0144802.g001: XbaI PFGE macrorestriction cluster analysis and antimicrobial resistance patterns of 91 ESC-susceptible and ESC-resistant Salmonella Infantis (ST32) from humans, animals and meats thereof, 2001–2014.Abbreviations: ESC-R: Extended-spectrum cephalosporin resistance; AMP: ampicillin; CTX: cefotaxime; CHL: chloramphenicol; CIP: ciprofloxacin; NAL: nalidixic acid; STR: streptomycin; KAN: kanamycin; GEN: gentamicin; TET: tetracycline; SMX: sulfamethoxazole; TMP: trimethoprim

Mentions: MDR was a constant feature of the ESC-R isolates, with a minimum common resistance pattern of CTX-[AMP]-TET-SMX-TMP-NAL-CIP. MICs to CTX (8 mg/L), AMP (64–128 mg/L), TET (128 mg/L), SMX (2048 mg/L), TMP (64 mg/L) were all also in the range of clinical resistance according to the EUCAST Standard, along with NAL (128 mg/L), and CIP (0.25 mg/L) microbiological resistance. None showed a concurrent phenotype of resistance to carbapenems. The complete results of resistance patterns in all isolates under study are shown in Fig 1 and in Table A in S1 File.


Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014.

Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, Tolli R, D'Incau M, Staffolani M, Di Giannatale E, Hendriksen RS, Battisti A - PLoS ONE (2015)

XbaI PFGE macrorestriction cluster analysis and antimicrobial resistance patterns of 91 ESC-susceptible and ESC-resistant Salmonella Infantis (ST32) from humans, animals and meats thereof, 2001–2014.Abbreviations: ESC-R: Extended-spectrum cephalosporin resistance; AMP: ampicillin; CTX: cefotaxime; CHL: chloramphenicol; CIP: ciprofloxacin; NAL: nalidixic acid; STR: streptomycin; KAN: kanamycin; GEN: gentamicin; TET: tetracycline; SMX: sulfamethoxazole; TMP: trimethoprim
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4696813&req=5

pone.0144802.g001: XbaI PFGE macrorestriction cluster analysis and antimicrobial resistance patterns of 91 ESC-susceptible and ESC-resistant Salmonella Infantis (ST32) from humans, animals and meats thereof, 2001–2014.Abbreviations: ESC-R: Extended-spectrum cephalosporin resistance; AMP: ampicillin; CTX: cefotaxime; CHL: chloramphenicol; CIP: ciprofloxacin; NAL: nalidixic acid; STR: streptomycin; KAN: kanamycin; GEN: gentamicin; TET: tetracycline; SMX: sulfamethoxazole; TMP: trimethoprim
Mentions: MDR was a constant feature of the ESC-R isolates, with a minimum common resistance pattern of CTX-[AMP]-TET-SMX-TMP-NAL-CIP. MICs to CTX (8 mg/L), AMP (64–128 mg/L), TET (128 mg/L), SMX (2048 mg/L), TMP (64 mg/L) were all also in the range of clinical resistance according to the EUCAST Standard, along with NAL (128 mg/L), and CIP (0.25 mg/L) microbiological resistance. None showed a concurrent phenotype of resistance to carbapenems. The complete results of resistance patterns in all isolates under study are shown in Fig 1 and in Table A in S1 File.

Bottom Line: It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment.This emerging clone of S.Since S.

View Article: PubMed Central - PubMed

Affiliation: Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", National Reference Laboratory for Antimicrobial Resistance, Via Appia Nuova 1411, 00178, Rome, Italy.

ABSTRACT
We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013-2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011-2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001-2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280-320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies.

Show MeSH
Related in: MedlinePlus