Limits...
Lactobacilli with probiotic potential in the prairie vole (Microtus ochrogaster).

Assefa S, Ahles K, Bigelow S, Curtis JT, Köhler GA - Gut Pathog (2015)

Bottom Line: The highly social prairie voles are an excellent model system to study the effects of environmental factors on social behavior.This study demonstrates that lactobacilli with probiotic potential are present in the vole intestine.The Lactobacillus isolates identified in this study will provide a basis for the investigation of probiotic effects in the vole behavioral model system.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA.

ABSTRACT

Background: Recent research suggests integration of the intestinal microbiota in gut-brain communication which could lead to new approaches to treat neurological disorders. The highly social prairie voles are an excellent model system to study the effects of environmental factors on social behavior. For future studies on the role of probiotics in ameliorating disorders with social withdrawal symptoms, we report the characterization of intestinal Lactobacillus isolates with probiotic potential from voles.

Methods and results: 30 bacterial strains were isolated from the vole intestine and found to be distinct but closely related to Lactobacillus johnsonii using 16S rRNA gene sequencing and Random Amplification of Polymorphic DNA fingerprinting. In vitro characterizations including acid and bile tolerance, antimicrobial effects, antibiotic susceptibility, and adherence to intestinal epithelial cells were performed to assess the probiotic potential of selected strains. Since previous studies revealed that mercury ingestion triggers social deficits in voles, mercury resistance of the probiotic candidates was evaluated which could be an important factor in preventing/treating these behavioral changes.

Conclusions: This study demonstrates that lactobacilli with probiotic potential are present in the vole intestine. The Lactobacillus isolates identified in this study will provide a basis for the investigation of probiotic effects in the vole behavioral model system.

No MeSH data available.


Related in: MedlinePlus

Relative abundance of lactobacilli in the GI tract of prairie voles. As indicator for the amount of lactobacilli in the vole GI tract, qPCR assays using group-specific and universal primers in conjunction with hydrolysis probes (see Table 2) were conducted to determine the relative abundance of Lactobacillus rRNA gene copies in content samples from the vole stomach, proximal small intestine (PSI), distal small intestine (DSI), cecum, and colon. Percent abundance values for five female (ring symbols) and seven male animals (solid symbols) are depicted on a logarithmic scale. Individual animals are represented by a specific symbol-color combination. Experiments were performed at least in duplicate. The horizontal bars indicate the geometric means of the abundance at the indicated sites for the twelve animals
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4696317&req=5

Fig3: Relative abundance of lactobacilli in the GI tract of prairie voles. As indicator for the amount of lactobacilli in the vole GI tract, qPCR assays using group-specific and universal primers in conjunction with hydrolysis probes (see Table 2) were conducted to determine the relative abundance of Lactobacillus rRNA gene copies in content samples from the vole stomach, proximal small intestine (PSI), distal small intestine (DSI), cecum, and colon. Percent abundance values for five female (ring symbols) and seven male animals (solid symbols) are depicted on a logarithmic scale. Individual animals are represented by a specific symbol-color combination. Experiments were performed at least in duplicate. The horizontal bars indicate the geometric means of the abundance at the indicated sites for the twelve animals

Mentions: We conducted a comparative survey to estimate the amount of lactobacilli present in male and female vole GI tracts by 16S rRNA-based qPCR. Published Lactobacillus-specific 16S rRNA gene primers were adapted to ensure complementarity with the respective gene sequences of the 30 vole strains, i.e., primer TaqLacR (Table 2) differs in one base from the published oligonucleotide sequence [40, 41]. Additionally, hydrolysis probes were designed for Lactobacillus and broad-range bacterial (primers GK1053F-1391R; Table 2) qPCR assays. These assays allowed for determination of the relative abundance of Lactobacillus 16S rDNA copy numbers in DNA isolated from vole stomachs, proximal and distal small intestines, ceca, and colons (Fig. 3). Interestingly, this assay revealed very high levels of lactobacilli in the stomachs (up to 47 %) and to lesser extend (up to 10 %) in the small intestines of some animals (see Fig. 3). Other animals exhibited far lower Lactobacillus abundance in the upper GI tract. In the distal GI tract (cecum and colon), lactobacilli appear to be generally less prevalent, accounting for less than 1 % of the total 16S rRNA. No statistically significant differences (ANOVA) were found in Lactobacillus abundance between the tested males and females at the respective gastrointestinal sites.Fig. 3


Lactobacilli with probiotic potential in the prairie vole (Microtus ochrogaster).

Assefa S, Ahles K, Bigelow S, Curtis JT, Köhler GA - Gut Pathog (2015)

Relative abundance of lactobacilli in the GI tract of prairie voles. As indicator for the amount of lactobacilli in the vole GI tract, qPCR assays using group-specific and universal primers in conjunction with hydrolysis probes (see Table 2) were conducted to determine the relative abundance of Lactobacillus rRNA gene copies in content samples from the vole stomach, proximal small intestine (PSI), distal small intestine (DSI), cecum, and colon. Percent abundance values for five female (ring symbols) and seven male animals (solid symbols) are depicted on a logarithmic scale. Individual animals are represented by a specific symbol-color combination. Experiments were performed at least in duplicate. The horizontal bars indicate the geometric means of the abundance at the indicated sites for the twelve animals
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4696317&req=5

Fig3: Relative abundance of lactobacilli in the GI tract of prairie voles. As indicator for the amount of lactobacilli in the vole GI tract, qPCR assays using group-specific and universal primers in conjunction with hydrolysis probes (see Table 2) were conducted to determine the relative abundance of Lactobacillus rRNA gene copies in content samples from the vole stomach, proximal small intestine (PSI), distal small intestine (DSI), cecum, and colon. Percent abundance values for five female (ring symbols) and seven male animals (solid symbols) are depicted on a logarithmic scale. Individual animals are represented by a specific symbol-color combination. Experiments were performed at least in duplicate. The horizontal bars indicate the geometric means of the abundance at the indicated sites for the twelve animals
Mentions: We conducted a comparative survey to estimate the amount of lactobacilli present in male and female vole GI tracts by 16S rRNA-based qPCR. Published Lactobacillus-specific 16S rRNA gene primers were adapted to ensure complementarity with the respective gene sequences of the 30 vole strains, i.e., primer TaqLacR (Table 2) differs in one base from the published oligonucleotide sequence [40, 41]. Additionally, hydrolysis probes were designed for Lactobacillus and broad-range bacterial (primers GK1053F-1391R; Table 2) qPCR assays. These assays allowed for determination of the relative abundance of Lactobacillus 16S rDNA copy numbers in DNA isolated from vole stomachs, proximal and distal small intestines, ceca, and colons (Fig. 3). Interestingly, this assay revealed very high levels of lactobacilli in the stomachs (up to 47 %) and to lesser extend (up to 10 %) in the small intestines of some animals (see Fig. 3). Other animals exhibited far lower Lactobacillus abundance in the upper GI tract. In the distal GI tract (cecum and colon), lactobacilli appear to be generally less prevalent, accounting for less than 1 % of the total 16S rRNA. No statistically significant differences (ANOVA) were found in Lactobacillus abundance between the tested males and females at the respective gastrointestinal sites.Fig. 3

Bottom Line: The highly social prairie voles are an excellent model system to study the effects of environmental factors on social behavior.This study demonstrates that lactobacilli with probiotic potential are present in the vole intestine.The Lactobacillus isolates identified in this study will provide a basis for the investigation of probiotic effects in the vole behavioral model system.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107 USA.

ABSTRACT

Background: Recent research suggests integration of the intestinal microbiota in gut-brain communication which could lead to new approaches to treat neurological disorders. The highly social prairie voles are an excellent model system to study the effects of environmental factors on social behavior. For future studies on the role of probiotics in ameliorating disorders with social withdrawal symptoms, we report the characterization of intestinal Lactobacillus isolates with probiotic potential from voles.

Methods and results: 30 bacterial strains were isolated from the vole intestine and found to be distinct but closely related to Lactobacillus johnsonii using 16S rRNA gene sequencing and Random Amplification of Polymorphic DNA fingerprinting. In vitro characterizations including acid and bile tolerance, antimicrobial effects, antibiotic susceptibility, and adherence to intestinal epithelial cells were performed to assess the probiotic potential of selected strains. Since previous studies revealed that mercury ingestion triggers social deficits in voles, mercury resistance of the probiotic candidates was evaluated which could be an important factor in preventing/treating these behavioral changes.

Conclusions: This study demonstrates that lactobacilli with probiotic potential are present in the vole intestine. The Lactobacillus isolates identified in this study will provide a basis for the investigation of probiotic effects in the vole behavioral model system.

No MeSH data available.


Related in: MedlinePlus