Limits...
Mass spectrometry-based analyses showing the effects of secretor and blood group status on salivary N-glycosylation.

Albertolle ME, Hassis ME, Ng CJ, Cuison S, Williams K, Prakobphol A, Dykstra AB, Hall SC, Niles RK, Ewa Witkowska H, Fisher SJ - Clin Proteomics (2015)

Bottom Line: The results revealed novel salivary N-glycosites and glycoproteins not previously reported.As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures.Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health.

View Article: PubMed Central - PubMed

Affiliation: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA ; Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA.

ABSTRACT

Background: The carbohydrate portions of salivary glycoproteins play important roles, including mediating bacterial and leukocyte adhesion. Salivary glycosylation is complex. Many of its glycoproteins present ABO and Lewis blood group determinants. An individual's genetic complement and secretor status govern the expression of blood group antigens. We queried the extent to which salivary glycosylation varies according to blood group and secretor status. First, we screened submandibular/sublingual and parotid salivas collected as ductal secretions for reactivity with a panel of 16 lectins. We selected three lectins that reacted with the largest number of glycoproteins and one that recognized uncommon lactosamine-containing structures. Ductal salivas representing a secretor with complex blood group expression and a nonsecretor with a simple pattern were separated by SDS-PAGE. Gel slices were trypsin digested and the glycopeptides were individually separated on each of the four lectins. The bound fractions were de-N-glycosylated. LC-MS/MS identified the original glycosylation sites, the peptide sequences, and the parent proteins.

Results: The results revealed novel salivary N-glycosites and glycoproteins not previously reported. As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures.

Conclusions: Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health.

No MeSH data available.


Related in: MedlinePlus

Comparison of the relative lectin capture efficiency for N-glycosites that were detected in the secretor and nonsecretor samples across the lectins employed. Spectral counts of glycopeptides encompassing an N-glycosite captured by all four lectins were summed and a percentage contribution of each lectin to this pool was calculated to represent the relative capture efficiency of a specific lectin for a given N-glycosite. (Left panel) Examples of four N-glycosites that showed similar lectin binding profiles regardless of secretor status. (Right panel) Examples of four N-glycosites that demonstrated disparate lectin binding profiles according to secretor status
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4696288&req=5

Fig7: Comparison of the relative lectin capture efficiency for N-glycosites that were detected in the secretor and nonsecretor samples across the lectins employed. Spectral counts of glycopeptides encompassing an N-glycosite captured by all four lectins were summed and a percentage contribution of each lectin to this pool was calculated to represent the relative capture efficiency of a specific lectin for a given N-glycosite. (Left panel) Examples of four N-glycosites that showed similar lectin binding profiles regardless of secretor status. (Right panel) Examples of four N-glycosites that demonstrated disparate lectin binding profiles according to secretor status

Mentions: For this analysis, we compared one secretor and one nonsecretor and considered only common sites with ≥30 counts per donor. Of the 45 N-glycosites that met these criteria, most were highly correlated between the nonsecretor and the secretor samples (r > 0.69 for 60 % and 0.97 for 26.7 %). Figure 7 (left Panel) shows four examples according to their lectin binding profiles. To the right are four examples of N-glycosites that varied in their lectin enrichment levels according to secretor status. In addition to differences in individual N-glycosite lectin interactions according to secretor status, this analysis demonstrated interesting differences in glycosylation between the sites along the same peptide backbone, e.g., CF058_HUMAN (N24 vs. N69; r = 0.99 and 0.24, respectively).Fig. 7


Mass spectrometry-based analyses showing the effects of secretor and blood group status on salivary N-glycosylation.

Albertolle ME, Hassis ME, Ng CJ, Cuison S, Williams K, Prakobphol A, Dykstra AB, Hall SC, Niles RK, Ewa Witkowska H, Fisher SJ - Clin Proteomics (2015)

Comparison of the relative lectin capture efficiency for N-glycosites that were detected in the secretor and nonsecretor samples across the lectins employed. Spectral counts of glycopeptides encompassing an N-glycosite captured by all four lectins were summed and a percentage contribution of each lectin to this pool was calculated to represent the relative capture efficiency of a specific lectin for a given N-glycosite. (Left panel) Examples of four N-glycosites that showed similar lectin binding profiles regardless of secretor status. (Right panel) Examples of four N-glycosites that demonstrated disparate lectin binding profiles according to secretor status
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4696288&req=5

Fig7: Comparison of the relative lectin capture efficiency for N-glycosites that were detected in the secretor and nonsecretor samples across the lectins employed. Spectral counts of glycopeptides encompassing an N-glycosite captured by all four lectins were summed and a percentage contribution of each lectin to this pool was calculated to represent the relative capture efficiency of a specific lectin for a given N-glycosite. (Left panel) Examples of four N-glycosites that showed similar lectin binding profiles regardless of secretor status. (Right panel) Examples of four N-glycosites that demonstrated disparate lectin binding profiles according to secretor status
Mentions: For this analysis, we compared one secretor and one nonsecretor and considered only common sites with ≥30 counts per donor. Of the 45 N-glycosites that met these criteria, most were highly correlated between the nonsecretor and the secretor samples (r > 0.69 for 60 % and 0.97 for 26.7 %). Figure 7 (left Panel) shows four examples according to their lectin binding profiles. To the right are four examples of N-glycosites that varied in their lectin enrichment levels according to secretor status. In addition to differences in individual N-glycosite lectin interactions according to secretor status, this analysis demonstrated interesting differences in glycosylation between the sites along the same peptide backbone, e.g., CF058_HUMAN (N24 vs. N69; r = 0.99 and 0.24, respectively).Fig. 7

Bottom Line: The results revealed novel salivary N-glycosites and glycoproteins not previously reported.As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures.Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health.

View Article: PubMed Central - PubMed

Affiliation: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA ; Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA.

ABSTRACT

Background: The carbohydrate portions of salivary glycoproteins play important roles, including mediating bacterial and leukocyte adhesion. Salivary glycosylation is complex. Many of its glycoproteins present ABO and Lewis blood group determinants. An individual's genetic complement and secretor status govern the expression of blood group antigens. We queried the extent to which salivary glycosylation varies according to blood group and secretor status. First, we screened submandibular/sublingual and parotid salivas collected as ductal secretions for reactivity with a panel of 16 lectins. We selected three lectins that reacted with the largest number of glycoproteins and one that recognized uncommon lactosamine-containing structures. Ductal salivas representing a secretor with complex blood group expression and a nonsecretor with a simple pattern were separated by SDS-PAGE. Gel slices were trypsin digested and the glycopeptides were individually separated on each of the four lectins. The bound fractions were de-N-glycosylated. LC-MS/MS identified the original glycosylation sites, the peptide sequences, and the parent proteins.

Results: The results revealed novel salivary N-glycosites and glycoproteins not previously reported. As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures.

Conclusions: Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health.

No MeSH data available.


Related in: MedlinePlus