Limits...
Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

Gamero-Sandemetrio E, Torrellas M, Rábena MT, Gómez-Pastor R, Aranda A, Matallana E - AMB Express (2015)

Bottom Line: The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations.Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance.Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7. Paterna, 46980, Valencia, Spain. esther.gamero@uv.es.

ABSTRACT
The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter.

No MeSH data available.


Related in: MedlinePlus

Effects of argan oil supplementation in physiological performance and oxidative damage. a Biomass yield. b Fermentative capacity. c Lipid peroxidation in dry cells was expressed as the amount of MDA per mg of protein. d Protein carbonyl content as in Fig. 1. Error bars correspond to the SD value of three independent experiments. Asterisk are significantly different from control (non-supplemented molasses) with p < 0.05
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4666183&req=5

Fig2: Effects of argan oil supplementation in physiological performance and oxidative damage. a Biomass yield. b Fermentative capacity. c Lipid peroxidation in dry cells was expressed as the amount of MDA per mg of protein. d Protein carbonyl content as in Fig. 1. Error bars correspond to the SD value of three independent experiments. Asterisk are significantly different from control (non-supplemented molasses) with p < 0.05

Mentions: Supplementation of molasses with 6 mg/mL of argan oil increased biomass yield and fermentative capacity (Fig. 2a, b, respectively), except for D301 and D170 strains, which were improved only in the second parameter. Lipid peroxidation was diminished by argan oil in agreement to its beneficial effects (Fig. 2c). Protein carbonylation (Fig. 2d), however, was in general not affected by argan oil, except for D272 and P6, were contrary effects are observed without a correlation with biomass yield or fermentative capacity.Fig. 2


Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

Gamero-Sandemetrio E, Torrellas M, Rábena MT, Gómez-Pastor R, Aranda A, Matallana E - AMB Express (2015)

Effects of argan oil supplementation in physiological performance and oxidative damage. a Biomass yield. b Fermentative capacity. c Lipid peroxidation in dry cells was expressed as the amount of MDA per mg of protein. d Protein carbonyl content as in Fig. 1. Error bars correspond to the SD value of three independent experiments. Asterisk are significantly different from control (non-supplemented molasses) with p < 0.05
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4666183&req=5

Fig2: Effects of argan oil supplementation in physiological performance and oxidative damage. a Biomass yield. b Fermentative capacity. c Lipid peroxidation in dry cells was expressed as the amount of MDA per mg of protein. d Protein carbonyl content as in Fig. 1. Error bars correspond to the SD value of three independent experiments. Asterisk are significantly different from control (non-supplemented molasses) with p < 0.05
Mentions: Supplementation of molasses with 6 mg/mL of argan oil increased biomass yield and fermentative capacity (Fig. 2a, b, respectively), except for D301 and D170 strains, which were improved only in the second parameter. Lipid peroxidation was diminished by argan oil in agreement to its beneficial effects (Fig. 2c). Protein carbonylation (Fig. 2d), however, was in general not affected by argan oil, except for D272 and P6, were contrary effects are observed without a correlation with biomass yield or fermentative capacity.Fig. 2

Bottom Line: The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations.Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance.Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7. Paterna, 46980, Valencia, Spain. esther.gamero@uv.es.

ABSTRACT
The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter.

No MeSH data available.


Related in: MedlinePlus