Limits...
The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus.

Song F, Pan Z, Bai F, An J, Liu J, Guo W, Bisseling T, Deng X, Xiao S - Front Microbiol (2015)

Bottom Line: However, the AMF community structure of citrus is largely unknown.Over 7,40,000 effective sequences were obtained from 77 citrus root samples.These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan, China.

ABSTRACT
Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner-the scion-of the grafted citrus tree.

No MeSH data available.


Related in: MedlinePlus

Principal component analysis (PCA) of variations in citrus AMF community from different habitats. C means samples collected in Chengdu city; D, Danjiangkou city; F, Xinfeng town; H, Hanzhong city; S, Shaoyang city; W, Wuhan Huazhong Agricultural University; X, Xunwu town; Y, Yiling city.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664953&req=5

Figure 3: Principal component analysis (PCA) of variations in citrus AMF community from different habitats. C means samples collected in Chengdu city; D, Danjiangkou city; F, Xinfeng town; H, Hanzhong city; S, Shaoyang city; W, Wuhan Huazhong Agricultural University; X, Xunwu town; Y, Yiling city.

Mentions: Principal component analysis (PCA) was performed to further evaluate the effect of habitats on AMF diversity. PCA of the entire set of root samples (i.e., 77 individual samples representing 23 genotypes or scion/rootstock combinations from eight different locations; for details see Table S1 and Figure S1, Supporting information) identified two components that accounted for 25.77% of the total variance, being explained by axis 1 (14.52%) and by axis 2 (11.25%) (Figure 3). Based on this analysis, the AMF community compositions of the 77 root samples can be grouped into three clusters (Figure 3). Cluster I in the upper-right contains all the nine root samples from Hanzhong (violet plots in Figure 3) and nine root samples from Chengdu (red); Cluster II in the upper-left contains ten of the 12 root samples from Yiling (pink), seven of the nine samples from Xunwu (brown) and 13 of the 21 samples from Wuhan (yellow); Cluster III in the bottom contains nine of the 11 samples from Xinfeng (green), two of the three samples from Shaoyang (orange), three samples from Danjiangkou city (blue), and six of the 21 samples from Wuhan (yellow). Thus, based on the PCA analyses, it appears that the AMF community compositions of the root samples collected from Hanzhong, Chengdu, Yiling and Xinfeng were largely distinct from each other and from the rest of the four habitats. Despite that root samples from Xunwu, Shaoyang, Danjiangkou, and Wuhan showed relatively less distinct habitat-specific features in their AMF community compositions, the replicated samples from the same location were still clustered together except for those from Wuhan (which were split into two clusters; for possible reasons, see later section). Because the genotypes of citrus trees sampled vary within or between some habitats (Table S1), these results indicate that habitat has a major impact on citrus AMF community structures, whereas citrus genotypes have relatively less influence on them.


The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus.

Song F, Pan Z, Bai F, An J, Liu J, Guo W, Bisseling T, Deng X, Xiao S - Front Microbiol (2015)

Principal component analysis (PCA) of variations in citrus AMF community from different habitats. C means samples collected in Chengdu city; D, Danjiangkou city; F, Xinfeng town; H, Hanzhong city; S, Shaoyang city; W, Wuhan Huazhong Agricultural University; X, Xunwu town; Y, Yiling city.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664953&req=5

Figure 3: Principal component analysis (PCA) of variations in citrus AMF community from different habitats. C means samples collected in Chengdu city; D, Danjiangkou city; F, Xinfeng town; H, Hanzhong city; S, Shaoyang city; W, Wuhan Huazhong Agricultural University; X, Xunwu town; Y, Yiling city.
Mentions: Principal component analysis (PCA) was performed to further evaluate the effect of habitats on AMF diversity. PCA of the entire set of root samples (i.e., 77 individual samples representing 23 genotypes or scion/rootstock combinations from eight different locations; for details see Table S1 and Figure S1, Supporting information) identified two components that accounted for 25.77% of the total variance, being explained by axis 1 (14.52%) and by axis 2 (11.25%) (Figure 3). Based on this analysis, the AMF community compositions of the 77 root samples can be grouped into three clusters (Figure 3). Cluster I in the upper-right contains all the nine root samples from Hanzhong (violet plots in Figure 3) and nine root samples from Chengdu (red); Cluster II in the upper-left contains ten of the 12 root samples from Yiling (pink), seven of the nine samples from Xunwu (brown) and 13 of the 21 samples from Wuhan (yellow); Cluster III in the bottom contains nine of the 11 samples from Xinfeng (green), two of the three samples from Shaoyang (orange), three samples from Danjiangkou city (blue), and six of the 21 samples from Wuhan (yellow). Thus, based on the PCA analyses, it appears that the AMF community compositions of the root samples collected from Hanzhong, Chengdu, Yiling and Xinfeng were largely distinct from each other and from the rest of the four habitats. Despite that root samples from Xunwu, Shaoyang, Danjiangkou, and Wuhan showed relatively less distinct habitat-specific features in their AMF community compositions, the replicated samples from the same location were still clustered together except for those from Wuhan (which were split into two clusters; for possible reasons, see later section). Because the genotypes of citrus trees sampled vary within or between some habitats (Table S1), these results indicate that habitat has a major impact on citrus AMF community structures, whereas citrus genotypes have relatively less influence on them.

Bottom Line: However, the AMF community structure of citrus is largely unknown.Over 7,40,000 effective sequences were obtained from 77 citrus root samples.These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan, China.

ABSTRACT
Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner-the scion-of the grafted citrus tree.

No MeSH data available.


Related in: MedlinePlus