Limits...
Transcriptomes reveal the genetic mechanisms underlying ionic regulatory adaptations to salt in the crab-eating frog.

Shao Y, Wang LJ, Zhong L, Hong ML, Chen HM, Murphy RW, Wu DD, Zhang YP, Che J - Sci Rep (2015)

Bottom Line: Genes in categories associated with ion transport appear to have evolved rapidly in F. cancrivora.Four genes involved in the regulation of body fluid levels show signs of positive selection and increased expression.Significant up-regulation occurs in several genes of F. cancrivora associated with renin-angiotensin system and aldosterone-regulated sodium reabsorption pathways, which relate to osmotic regulation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China.

ABSTRACT
The crab-eating frog, Fejervarya cancrivora, is the only frog that lives near seas. It tolerates increased environmental concentrations of sodium, chloride and potassium partly by raising ion and urea levels in its blood plasma. The molecular mechanism of the adaptation remains rarely documented. Herein, we analyze transcriptomes of the crab-eating frog and its closely related saline-intolerant species, F. limnocharis, to explore the molecular basis of adaptations to such extreme environmental conditions. Analyses reveal the potential genetic mechanism underlying the adaptation to salinity for the crab-eating frog. Genes in categories associated with ion transport appear to have evolved rapidly in F. cancrivora. Both positively selected and differentially expressed genes exhibit enrichment in the GO category regulation of renal sodium excretion. In this category, the positively selected sites of ANPEP and AVPR2 encode CD13 and V2 receptors, respectively; they fall precisely on conserved domains. More differentially expressed rapidly evolved genes occur in the kidney of F. cancrivora than in F. limnocharis. Four genes involved in the regulation of body fluid levels show signs of positive selection and increased expression. Significant up-regulation occurs in several genes of F. cancrivora associated with renin-angiotensin system and aldosterone-regulated sodium reabsorption pathways, which relate to osmotic regulation.

No MeSH data available.


Related in: MedlinePlus

Protein-Protein Interaction network analyses of candidate genes in Fejervarya cancrivora.Red dots denote candidate positively selected genes and grey dots represent background genes. The candidate genes with degree ≥ 100 were named.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664912&req=5

f3: Protein-Protein Interaction network analyses of candidate genes in Fejervarya cancrivora.Red dots denote candidate positively selected genes and grey dots represent background genes. The candidate genes with degree ≥ 100 were named.

Mentions: We mapped the candidate positively selected genes to the protein-protein interaction network database (InnateDB)25 to understand their biological functions. Sub-networks of more than five nodes were retained. In total, 129 seed proteins (queries) (69.4.5%) mapped to a sub-network consisting of 1756 nodes (proteins) and 2611 edges (protein-protein interactions). Positively selected XRCC6, VIM, TUFM, ALB and SNRNP70 had the strong ability to interact with other positively selected genes and non-seed proteins (degrees > 100) (Fig. 3). The protein encoded by ALB mainly functioned in the regulation of the colloidal osmotic pressure of blood; it may have played an important role in the plasma osmotic pressure of F. cancrivora.


Transcriptomes reveal the genetic mechanisms underlying ionic regulatory adaptations to salt in the crab-eating frog.

Shao Y, Wang LJ, Zhong L, Hong ML, Chen HM, Murphy RW, Wu DD, Zhang YP, Che J - Sci Rep (2015)

Protein-Protein Interaction network analyses of candidate genes in Fejervarya cancrivora.Red dots denote candidate positively selected genes and grey dots represent background genes. The candidate genes with degree ≥ 100 were named.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664912&req=5

f3: Protein-Protein Interaction network analyses of candidate genes in Fejervarya cancrivora.Red dots denote candidate positively selected genes and grey dots represent background genes. The candidate genes with degree ≥ 100 were named.
Mentions: We mapped the candidate positively selected genes to the protein-protein interaction network database (InnateDB)25 to understand their biological functions. Sub-networks of more than five nodes were retained. In total, 129 seed proteins (queries) (69.4.5%) mapped to a sub-network consisting of 1756 nodes (proteins) and 2611 edges (protein-protein interactions). Positively selected XRCC6, VIM, TUFM, ALB and SNRNP70 had the strong ability to interact with other positively selected genes and non-seed proteins (degrees > 100) (Fig. 3). The protein encoded by ALB mainly functioned in the regulation of the colloidal osmotic pressure of blood; it may have played an important role in the plasma osmotic pressure of F. cancrivora.

Bottom Line: Genes in categories associated with ion transport appear to have evolved rapidly in F. cancrivora.Four genes involved in the regulation of body fluid levels show signs of positive selection and increased expression.Significant up-regulation occurs in several genes of F. cancrivora associated with renin-angiotensin system and aldosterone-regulated sodium reabsorption pathways, which relate to osmotic regulation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China.

ABSTRACT
The crab-eating frog, Fejervarya cancrivora, is the only frog that lives near seas. It tolerates increased environmental concentrations of sodium, chloride and potassium partly by raising ion and urea levels in its blood plasma. The molecular mechanism of the adaptation remains rarely documented. Herein, we analyze transcriptomes of the crab-eating frog and its closely related saline-intolerant species, F. limnocharis, to explore the molecular basis of adaptations to such extreme environmental conditions. Analyses reveal the potential genetic mechanism underlying the adaptation to salinity for the crab-eating frog. Genes in categories associated with ion transport appear to have evolved rapidly in F. cancrivora. Both positively selected and differentially expressed genes exhibit enrichment in the GO category regulation of renal sodium excretion. In this category, the positively selected sites of ANPEP and AVPR2 encode CD13 and V2 receptors, respectively; they fall precisely on conserved domains. More differentially expressed rapidly evolved genes occur in the kidney of F. cancrivora than in F. limnocharis. Four genes involved in the regulation of body fluid levels show signs of positive selection and increased expression. Significant up-regulation occurs in several genes of F. cancrivora associated with renin-angiotensin system and aldosterone-regulated sodium reabsorption pathways, which relate to osmotic regulation.

No MeSH data available.


Related in: MedlinePlus