Limits...
Rhythm and Attention: Does the Beat Position of a Visual or Auditory Regular Pulse Modulate T2 Detection in the Attentional Blink?

Bermeitinger C, Frings C - Front Psychol (2015)

Bottom Line: We found large AB effects.However, the rhythm did not modulate the AB.Our experiments suggest that oscillatory cycling attention does not affect temporal selection as tapped in the AB paradigm.

View Article: PubMed Central - PubMed

Affiliation: Experimental Psychology, Institute of Psychology, University of Hildesheim Hildesheim, Germany.

ABSTRACT
The attentional blink (AB) is one impressive demonstration of limited attentional capacities in time: a second target (T2) is often missed when it should be detected within 200-600 ms after a first target. According to the dynamic attending theory, attention cycles oscillatory. Regular rhythms (i.e., pulses) should evoke expectations regarding the point of the next occurrence of a tone/element in the rhythm. At this point, more attentional resources should be provided. Thus, if rhythmic information can be used to optimize attentional release, we assume a modulation of the AB when an additional rhythm is given. We tested this idea in two experiments with a visual (Experiment 1) or an auditory (Experiment 2) rhythm. We found large AB effects. However, the rhythm did not modulate the AB. If the rhythm had an influence at all, then Experiment 2 showed that an auditory rhythm (or stimulus) falling on T2 might generally boost visual processing, irrespective of attentional resources as indexed by the AB paradigm. Our experiments suggest that oscillatory cycling attention does not affect temporal selection as tapped in the AB paradigm.

No MeSH data available.


Related in: MedlinePlus

T2 detection rate (in %, for trials with correct T1 identification and when the T2 probe was present) in the control experiment with an auditory critical cue stimulus without a preceding rhythm, depending on lag and position of the critical cue stimulus. Bars indicate the standard error of the mean.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664834&req=5

Figure 4: T2 detection rate (in %, for trials with correct T1 identification and when the T2 probe was present) in the control experiment with an auditory critical cue stimulus without a preceding rhythm, depending on lag and position of the critical cue stimulus. Bars indicate the standard error of the mean.

Mentions: We ran a control experiment of Experiment 2 in which we removed the rhythm and presented only the critical cue stimulus. The experiment was a replication of Experiment 2 except that we did not present any rhythm but only single tones as critical cue stimuli. (Please find the detailed description of the control experiment in the Appendix in Supplementary Material.) The critical cue stimuli were tones between 750 and 1250 Hz and participants had to compare (same/different decision) the tone pitch of the critical cue stimulus with a 1000 Hz standard tone presented at the beginning of each trial. With 24 student participants, we again found a significant main effect of lag, i.e., an AB effect, F(2, 46) = 9.30, MSE = 1050.33, p < 0.001, 0.29. The main effect of “position of critical cue stimulus” as well as the interaction of both factors were not significant (ps > 0.40; for the results see also Figure 4). In addition, comparing the control experiment and Experiment 2, we did not find statistical evidence for a general enhancement or impairment by the rhythm (i.e., there was no main effect of experiment/rhythm, F < 1, p = 0.85), and the interaction of experiment/rhythm and lag also missed the criterion for being significant, F(2, 128) = 1.99, p = 0.14 (all other effects including the factor experiment/rhythm were also not significant, ps > 0.70). Thus, we did not find evidence for a general enhancement/influence of the rhythm used in Experiment 2 and a control condition in which no rhythm was used (Of course, the lack of significance does not prove the H0). We interpret this as evidence that the results in our rhythm experiment(s) are not due a specific entrainment by the rhythm. As long as one does not argue that the presence of a critical cue stimulus effect and the rhythm modulation do interact in a disordinal way, the critical cue stimulus only adds a main effect and as a result the net effect of (any) critical cue stimulus effect and the rhythm modulation would still be usable for testing whether rhythms modulate the AB.


Rhythm and Attention: Does the Beat Position of a Visual or Auditory Regular Pulse Modulate T2 Detection in the Attentional Blink?

Bermeitinger C, Frings C - Front Psychol (2015)

T2 detection rate (in %, for trials with correct T1 identification and when the T2 probe was present) in the control experiment with an auditory critical cue stimulus without a preceding rhythm, depending on lag and position of the critical cue stimulus. Bars indicate the standard error of the mean.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664834&req=5

Figure 4: T2 detection rate (in %, for trials with correct T1 identification and when the T2 probe was present) in the control experiment with an auditory critical cue stimulus without a preceding rhythm, depending on lag and position of the critical cue stimulus. Bars indicate the standard error of the mean.
Mentions: We ran a control experiment of Experiment 2 in which we removed the rhythm and presented only the critical cue stimulus. The experiment was a replication of Experiment 2 except that we did not present any rhythm but only single tones as critical cue stimuli. (Please find the detailed description of the control experiment in the Appendix in Supplementary Material.) The critical cue stimuli were tones between 750 and 1250 Hz and participants had to compare (same/different decision) the tone pitch of the critical cue stimulus with a 1000 Hz standard tone presented at the beginning of each trial. With 24 student participants, we again found a significant main effect of lag, i.e., an AB effect, F(2, 46) = 9.30, MSE = 1050.33, p < 0.001, 0.29. The main effect of “position of critical cue stimulus” as well as the interaction of both factors were not significant (ps > 0.40; for the results see also Figure 4). In addition, comparing the control experiment and Experiment 2, we did not find statistical evidence for a general enhancement or impairment by the rhythm (i.e., there was no main effect of experiment/rhythm, F < 1, p = 0.85), and the interaction of experiment/rhythm and lag also missed the criterion for being significant, F(2, 128) = 1.99, p = 0.14 (all other effects including the factor experiment/rhythm were also not significant, ps > 0.70). Thus, we did not find evidence for a general enhancement/influence of the rhythm used in Experiment 2 and a control condition in which no rhythm was used (Of course, the lack of significance does not prove the H0). We interpret this as evidence that the results in our rhythm experiment(s) are not due a specific entrainment by the rhythm. As long as one does not argue that the presence of a critical cue stimulus effect and the rhythm modulation do interact in a disordinal way, the critical cue stimulus only adds a main effect and as a result the net effect of (any) critical cue stimulus effect and the rhythm modulation would still be usable for testing whether rhythms modulate the AB.

Bottom Line: We found large AB effects.However, the rhythm did not modulate the AB.Our experiments suggest that oscillatory cycling attention does not affect temporal selection as tapped in the AB paradigm.

View Article: PubMed Central - PubMed

Affiliation: Experimental Psychology, Institute of Psychology, University of Hildesheim Hildesheim, Germany.

ABSTRACT
The attentional blink (AB) is one impressive demonstration of limited attentional capacities in time: a second target (T2) is often missed when it should be detected within 200-600 ms after a first target. According to the dynamic attending theory, attention cycles oscillatory. Regular rhythms (i.e., pulses) should evoke expectations regarding the point of the next occurrence of a tone/element in the rhythm. At this point, more attentional resources should be provided. Thus, if rhythmic information can be used to optimize attentional release, we assume a modulation of the AB when an additional rhythm is given. We tested this idea in two experiments with a visual (Experiment 1) or an auditory (Experiment 2) rhythm. We found large AB effects. However, the rhythm did not modulate the AB. If the rhythm had an influence at all, then Experiment 2 showed that an auditory rhythm (or stimulus) falling on T2 might generally boost visual processing, irrespective of attentional resources as indexed by the AB paradigm. Our experiments suggest that oscillatory cycling attention does not affect temporal selection as tapped in the AB paradigm.

No MeSH data available.


Related in: MedlinePlus